Олег1105
?>

Найти объем правильной четырехугольной пирамиды, сторона основания которой равна 6 см, а боковая грань наклонена к плоскости основания под углом 60 °

Геометрия

Ответы

Мария-Кострыгина175

Другой решения этой задачи.
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
Следовательно, второй катет и гипотенуза этого треугольника относятся как 8:10.
Пусть коэффициент этого отношения будет х.
Тогда гипотенуза будет 10х,

второй неизвестный катет 8х,

а известный катет - сумма отрезков, на которые делит его биссектриса, т.е. 18 см.
По т. Пифагора
(10х)²-(8х)²=18²
36х²=324
х²=9
х=3
Гипотенуза равна 3*10=30 см
второй катет равен 3*8 =24 см
Р=18+30+24=72 см

kizyaev6651

Обозначим ΔАВС (<С=90⁰), АМ- биссектриса<А. Тогда СМ=8см, МВ=10см. Проведем МН-высоту ΔАМВ. ΔАСМ = ΔАНМ (по гипотенузе и острому углу)⇒СМ=МН=8см. По теореме Пифагора из ΔМНВ находим НВ. НВ²+МН²=МВ², НВ²=10²-8²=36, НВ = 6см.

ΔАСВ подобенΔМНВ ( по двум углам), значит их соответственные стороны пропорциональны: АС:МН = СВ:НВ,  АС:8=18:6, АС=24.

По теореме Пифагора находим АВ (из ΔАВС). АВ²= АС²+ ВС², АВ²= 24²+ 18²= 900, АВ=30см.

 Периметр ΔАВС равен (АВ+АС+ВС)= (30+24+18) = 72 см.

ответ: 72 см. 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти объем правильной четырехугольной пирамиды, сторона основания которой равна 6 см, а боковая грань наклонена к плоскости основания под углом 60 °
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

karpov68
chulki-kupit
kristina
apromovich1
Nazaruk_Kodochigov
yugraspets
steff77
Иванович
Руслан Руденко1262
voloshin238
maruska90
domtorgvl20082841
Nikishina
andrew55588201824
kmr495270