ABC - равнобедренный треугольник, AC = 8, P_ABC = 18, V_тела вращения = V_цилиндра с высотой равной основанию треугольника и радиусом равным высоте треугольника - 2*V_конуса с радиусом основания равным высоте треугольника и высотой равным половине основания треугольника
V_цилиндра = pi*r^2*h
Радиус найдём воспользовавшись теоремой Пифагора и тем, что наш треугольник равнобедренный. AB = BC = (P_ABC - AC)/2 = (18-8)/2 = 5, r_основания цилиндра (=высоте треугольника) = V(AB^2+(AC/2)^2) = V25 + 16 = V41 (Корень), (высоту искали из прямоугольного треугольника ABC', C' делит AC пополам)
равнобедренный треугольник вписанный круг, который делит боковую сторону в отношение 2 : 3, начиная от вершины, что лежит против основы. Найдите периметр треугольника, если его основа равна 12 см.Треугольник АВС, АВ=ВС, АС=12, точка М касание на АВ, точка Н касание на ВС, точка К касание на АС, ВМ/АМ=2/3 = ВН/СН, АМ=АК как касательные проведенные из одной точки =3, СК=СН как касательные проведенные из одной точки = 3АС=АК+СК=3+3=6 = 12 см1 часть=12/6=2АВ=3+2=5 частей = 5 х 2 =10 = ВСпериметр = 10+10+12=32
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дан отрезок МК, м(6, -2)к(-2;4)вычислить длину отрезка мк
ABC - равнобедренный треугольник, AC = 8, P_ABC = 18, V_тела вращения = V_цилиндра с высотой равной основанию треугольника и радиусом равным высоте треугольника - 2*V_конуса с радиусом основания равным высоте треугольника и высотой равным половине основания треугольника
V_цилиндра = pi*r^2*h
Радиус найдём воспользовавшись теоремой Пифагора и тем, что наш треугольник равнобедренный. AB = BC = (P_ABC - AC)/2 = (18-8)/2 = 5, r_основания цилиндра (=высоте треугольника) = V(AB^2+(AC/2)^2) = V25 + 16 = V41 (Корень), (высоту искали из прямоугольного треугольника ABC', C' делит AC пополам)
V_цилиндра = pi*r^2*h= pi * 41 * 8 =328pi
V_конуса = 1/3*pi*(r_конуса)^2*h_конуса = 1/3*pi*41*4 =123/3*pi
V_тела вращения = V_цилиндра - 2*V_конуса = 328pi - 246/3*pi = (328-82)pi = 246pi