CK =2AC*BC*cos(∠C/2) / (AC+BC) || Lc=2abcos(∠C/2)/(a+b) ||
yulyatmb
13.11.2022
Б) 12 см
Допустим, у нас четырехугольная пирамида, в основании которой лежит квадрат ABCD. Высота - SO. Точка O - точка пересечения диагоналей.
1. Основание - квадрат. Площадь квадрата можно найти по формуле , где d-диагональ.
см
2. Диагонали в квадрате равны и точкой пересечения делятся пополам - OA=OB=OC=OD. Находим любой из перечисленных отрезков. 10/2=5 см
3. Рассмотрим треугольник SOC - прямоугольный, т.к. SO - высота. Мы знаем боковую грань (гипотенуза) и катет (половина диагонали). Можем найти второй катет, т.е. высоту. По теореме Пифагора: SC²=SO²+OC² 13²=SO²+5² SO²=169-25 SO²=144 SO=12 см
akustov55
13.11.2022
Допустим, прямая не пересекает плоскость бета, а параллельна ей. Тогда все точки этой прямой должны находиться на равном удалении от плоскости бета (иначе один из концов пряой приблизится к плоскости бета и пересечет ее) . Одна точка, точка пересечения прямой с плоскостью альфа, находится на том же расстоянии от плоскости бета, что и плоскость альфа. Следовательно все остальные точки прямой находятся на таком же расстоянии, т. е. лежат в плоскости альфа, значит вся прямая долна лежать в плоскости альфа. Но по условию прямая не лежит в плоскости альфа, а пересекает ее. Таким образом она не может быть параллельна плоскости бета и пересечется с ней.
2Проведем в плоскости α две пересекающиеся прямые a и b, а через точку А проведем прямые a1 и b1, соответственно параллельные прямым а и b. Рассмотрим плоскость β, проходящую через прямые a1 и b1. Плоскость β — искомая, так как она проходит через точку A и по признаку параллельности двух плоскостей параллельна плоскости α.Докажем теперь, что β — единственная плоскость, проходящая через точку А и параллельная плоскости &alpha. В самом деле, любая другая плоскость, проходящая через точку А, пересекает плоскость β, поэтому пересекает и параллельную ей плоскость a
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике ABC угол С = 120°, СК— биссектриса. Доказать, что 1/CK=1/AC+1/BCP.S. /-знак деления через дробь)
В треугольнике ABC ∠C = 120°, CK—биссектриса.
Доказать, что 1 / CK = 1 / AC+1 / BC. || 1 / lc = 1 / a + 1 / b ||
- - - - - - - - - - - - - - - - - - - - - - - - - - -
CK = 2*AC*BC*cos(∠ACB /2) / (AC+BC)
CK= 2*AC*BC*cos(120°/2) / (AC + BC) || cos60° =1 /2 ||
CK= AC*BC / (AC+BC) ⇔ 1 / CK = (AC+BC) / AC*BC
1 / CK = AC / AC*BC + BC / AC*BC
1 / CK = 1 / AC+ 1 / BC ч. т. д.
= = = = = = = = = = = = = = = = = = = = = = = = = = = = =
* * * P.S. ∠ACB = ∠C ; ACK =∠BCK =∠ ACB /2 = ∠C /2
CK = Lc = 2abcos(∠C/2) / (a+b) * * *
действительно :
S(ΔACB) =S(ΔACK) + S(ΔBCK) ;
(1/2)*AC*BC*sin∠C=(1/2)*AC*CK*sin(∠C/2) + (1/2)*BC*CK*sin∠C/2)
(1/2)*AC*BC*sin∠C =(1/2)*CK*sin(∠C/2) *(AC + BC)
* * * ! sin2α = 2sinα*cosα * * *
* * * sin∠C = sin(2*∠C/2) = 2sin(∠C/2)*cos(∠C/2) * * *
2AC*BC*cos(∠C/2) = CK* (AC + BC) ;
CK =2AC*BC*cos(∠C/2) / (AC+BC) || Lc=2abcos(∠C/2)/(a+b) ||