Stefanidi_Semeikina1896
?>

Даны точки А(3; 5), В( - 6; - 2) и С(0; - 6 Докажите что треугольник АВС равнобедренный. реще если могёте

Геометрия

Ответы

karpovaveronika196
AM ⊥BM ( AB диаметр большой окружности )
OC ⊥ BM ( OC ⊥ BC ,где  O центр малой окружности , BC касательная) ⇒ AM | | OC .  MC/CB= AO/OB  (обобщенная теорема Фалеса) .  
2,4 /4 =r/(2R -r) ⇔   r=3R/4   (1) .
Из ΔBCO  по теореме Пифагора :
OB² - OC² =BC² ;
(2R -r)² - r² = 4² ⇔ 4R(R-r) =16  ⇔ R(R-r) =4   (2).
R(R -3R/4) =4 ⇒  R =4. ⇒  r=3R/4 = 3.

AD =AC+CD.
AM =√(AB² -BM²) =√((2R)² -(MC+CB)² ) =√(8² -6,4²) =√(8 -6,4)(8 +6,4) =4,8.  
AM можно вычислить по другому: AM/OC =MB/CB ⇔ AM/3 =6,4/4⇒
AM =4,8.
---
AC =√(BC² +AM²) =√(2,4² +4,8²) =√(2,4² +(2*2,4)²)  = 2,4√5. 
AC*CD = MC*BC ⇔ 2,4√5 *CD =2,4*4⇒ CD =4/√5 =4√5 / 5 =0,8√5.
AD =AC+CD= 2,4√5 + 0,8√5  =3,2√5 .
asemchenko

a) Равные отрезки по осям - треугольник равносторонний.

b) По разности координат находим длины сторон треугольника.

   А(2; 0; 5), В(3; 4; 0), С(2; 4; 0)​

                                                       Квадрат  Сторона

AB = √((xB-xA)²+(yB-yA)²+(zB-zA)²) = 1 16 25 42 6,480740698

BC = √((xC-xB)²+(yC-yB)²+(zC-zB)²) = 1 0 0 1 1

AC = √((xC-xA)²+(yC-yA)²+(zC-zA)²) = 0 16 25 41 6,403124237 .

По теореме косинусов находим углы:

Полупериметр р=  6,941932468 .

cos A = 0,98802352 cos B = 0,15430335 cos C = 0

A = 0,15492232 В = 1,415874007 С = 1,570796327     это радианы

8,876395081  81,12360492  90                      это градусы.

Треугольник прямоугольный.

Можно было определить и по сумме квадратов сторон:

ВС^2 + AC^2 = AB^2.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Даны точки А(3; 5), В( - 6; - 2) и С(0; - 6 Докажите что треугольник АВС равнобедренный. реще если могёте
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Valentina1520
grishin
maxchuev
Акоповна
Viktor1316
supercom-ru-marinaguseva4267
zabava-83
TatyanaVladimirovich
GoncharenkoKuzmin
Dushko
yok887062
Sergeevna803
md-masya
mail9
alex13izmailov