Найти площадь полной поверхности правильной треугольной пирамиды если сторона основания основания равна 3см, а двугранный угол при стороне основания равен 45
Здравствуйте. Решение 1 задачи состоит в знании второго признака подобии треугольников : " Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника " то эти треугольника подобны. В первом треугольника гипотенуза будет равна 5( по теореме Пифагора) . А во втором второй катет будет 8. Как видите все катеты одного треугольника в 2 раза меньше чем у другого треугольника и аналогичная ситуация с гипотенузой. Следовательно, треугольники подобные. Решение 2 задачи состоит в том, что при правильном рисунке, можно сразу ответить на второй вопрос, а именно отношение площадей. BC и AD являются основанием двух запрашиваемых треугольников, а их отношение равно 5/2. Так как отношение равно 5/2, мы можем посчитать и сторону ВО = 25 * 2,5 = 62,5.
espectr-m
27.10.2022
Нехай прямі АВ та СМ перетинаються в т.О. Кут АОС=ВОМ, бо вони вертикальні, а вертикальні кути рівні між собою. Кут АОМ=СОВ, бо вони вертикальні, а вертикальні кути рівні між собою. Нехай ∠СОВ+∠ВОМ+∠АОМ=286°. Суміжними називаються два кути, у яких одна сторона спільна, а дві інші є продовженням одна одної. Сума суміжних кутів дорівнює 180°. ∠СОВ+∠ВОМ=180°, бо вони суміжні. ∠АОМ+∠АОС=180°, бо вони суміжні. Виходить, що сума всіх кутів, що утворилися в результаті перетину прямих дорівнює 360°: ∠СОВ+∠ВОМ+∠АОМ+∠АОС=180°+180° ∠СОВ+∠ВОМ+∠АОМ+∠АОС=360° Оскільки ∠СОВ+∠ВОМ+∠АОМ=286°, виходить 286°+∠АОС = 360° ∠АОС=360-286 ∠АОС=74°. Виходить, що ∠АОС=∠ВОМ=74°.
Тепер оскільки ∠СОВ+∠ВОМ=180°, то ∠СОВ+74°=180° ∠СОВ=180°-74° ∠СОВ=106°. Виходить, що ∠СОВ=∠АОМ=106°.
Відповідь: два кути по 74° та два кути по 106°.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найти площадь полной поверхности правильной треугольной пирамиды если сторона основания основания равна 3см, а двугранный угол при стороне основания равен 45
Решение 2 задачи состоит в том, что при правильном рисунке, можно сразу ответить на второй вопрос, а именно отношение площадей. BC и AD являются основанием двух запрашиваемых треугольников, а их отношение равно 5/2. Так как отношение равно 5/2, мы можем посчитать и сторону ВО = 25 * 2,5 = 62,5.