Нет одна сторона треугольника не может быть больше суммы 2
Объяснение:
5.угол ВАЕ =60 град, значит угол АВЕ=30град.в прямоуг треуг против угола 30 градусов лежит сторона равная половине гипотенузы, значит половине боковой стороны с длиной 4 , то есть АЕ=2, СООТВЕТСТВЕННО ЧТОБ ПОЛУЧИЛСЯ ВЕРХ ТРАПЕЦИИ ,Надо из низа (12) вычесть два таких симметричных отрезка 12-2-2=8.
6. площадь трапеции равна произведению ее сред линии на высоту h,но также произведению среднего арифметического оснований на эту же высоту.Высоту сокращаем и приравниваем 11=((2х+4х+7х это низ) +4х (это верх))/2 .....х=11/17, 4х(верх)=44/17 (сократишь сам),низ =2х+4х+7х=13х=13*11/17= ...сам дорешаешь.
Пусть SO - высота пирамиды. МК пересекает SO в её середине (точка Р), поскольку является средней линией треугольника SAС.
Если через точку В провести прямую II AC и МК (одновременно - они между собой параллельны), то эта прямая будет принадлежать обеим плоскостям ВМК и АВС, будет перпендикулярна ВО и РО (РО вообще перпендикулярно плоскости АВС), а => и РВ. Поэтому искомый угол - это ОВР, обозначим его за Ф, ясно, что
tg(Ф) = РО/ВО. Вобщем-то, задача решена, так как РО = SO/2;
ВО = 6*корень(2)/2 = 3*корень(2); SO = корень(SB^2 - ВО^2) = корень(8^2 - (3*корень(2))^2) = корень(46); PO = корень(46)/2;
Какой-то тангенс получился кривой, и, как я не крутил, нормальных чисел не вышло.
Ну, tg(Ф) = корень(23)/6.
Поделитесь своими знаниями, ответьте на вопрос:
Гипотенуза больше суммы двух катетов
Теоре́ма Пифаго́ра — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника: сумма квадратов длин катетов равна квадрату длины гипотенузы.
Объяснение: