sergeev-alp5
?>

Верно ли утверждение "Существует треугольник все углы которого больше 50 градусов​

Геометрия

Ответы

Anna572

Задание: написать уравнение прямой ax+by+c=0, все точки которой находятся на равных расстояниях от точек A(5;2) и B(9;8) .

Геометрическое место точек, равноудалённых от точек А и В, это перпендикуляр к середине отрезка АВ.

Находим координаты точки С - середины отрезка АВ.

С = ((5+9)/2; (2+8)/2) = (7; 5).

Теперь находим уравнение прямой АВ.

Вектор АВ = (9-5; 8-2) = (4; 6). Это направляющий вектор прямой АВ.

У перпендикулярного вектора координаты такие, что скалярное произведение его и вектора прямой равно 0.

Значит, направляющий вектор перпендикуляра равен(-6; 4).

Используем координаты точки С(7; 5)..

ответ: уравнение искомой прямой (х - 7)/(-6) = (у - 5)/4 это в каноническом виде, или в общем виде 2х + 3у - 29 = 0.

rashodnikoff

c= 27.572

A=65.87

B=39.28

Объяснение:

по теореме косинусов:

с^2=a^2+b^2-2ab*cos75

c=корень(a^2+b^2-2ab*cos75) = корень(26^2+18^2-2*26*18*0.25)=

=корень(676+324-242.24)=корень(757.76)=27,572

по теореме синусов

a/sin.угла A = b/sin.угла B = c/sin.угла C

=> c/sin.угла C= 27.527/sin75 = 27.527/0.966=28.495

A=arccos(b^2+c^2-a^2/2bc)= arccos(18^2+27.572^2-26^2/2*18*27.572)=

= arccos(324+757.76-676/992.592)=arccos(0.4087883037542)=65.87

B = arccos(a^2+c^2-b^2/2ac)= arccos(676+757.76-324/1433.744)=

=arccos(0.774029)=39.28

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Верно ли утверждение "Существует треугольник все углы которого больше 50 градусов​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

rikki07834591
pavlino-mkr
Ubuleeva826
asvirskiy26
rs90603607904
asparinapti39
Хромов1501
nataliaterekhovasinger2
Мария-Кострыгина175
Sergeevna803
Svetlana1287
notka19746
symkifm
znaberd786
ShafetdinovAndrei