Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5см и 4см, считая от основания. Найдите периметр треугольника.
Треугольники BOP и AOM подобны по двум углам. k²=SBOP/SAOM=1 — их коэффициент подобия. Следовательно, треугольники BOP и AOM равны. угол ОВР= углу ОАМ, ОА=ОВ⇒угол ОАВ= углу ОВА⇒угол АВС=углу ВАС⇒ треугольник АВС- равнобедренный, АС=ВС. Следовательно, MP || AB. И треугольники АСВ, МСР и РОМ, АОВ- подобны. Пусть РО=МО=х, тогда из пропорции: МС/АС=MP/AB=MO/AB=x/(√2/2)=x√2⇒ MC = AC·x√2 = x√2 по т. Косинусов из треугольника ВМС BC² = MC² + MB² - 2MC . MB cos135 Получим уравнение: 10х²+4х√2-1=0⇒х=√2/10 Тогда МВ=3√2/5, МС=1/5 SABC = 5/4SAMB=3/10
Игоревна Худанов1150
10.10.2020
Решите уравнение, приравняв значения гипотенузы. Из из решения этого уравнения 2 x² + 10 x -72 = 0 D (Дискриминант уравнения) = b² - 4ac = 676 Дискриминант больше нуля (D > 0) => Уравнение имеет 2 вещественных решения (корня) √D = 26 Х первое =4 Х второе =-9 Гипотенуза равна 4+5=9 Из гипотенузы и высоты вычислить длину катетов.
Рисунок не вставляется. Нарисовать треугольник АВС, Провести высоту. Обозначить меньший отрезок гипотенузы х, больший (х+5). Найти квадраты катетов: АВ из высоты 6см и х ВС из высоты 6см и (х+5). (оставить их именно квадратами, не пытаясь извлечь корни) Затем по теореме Пифагора приравнять квадрат гипотенузы (2х+5)² к квадрату гипотенузы, найденному из суммы квадратов катетов. Привести подобные члены и получить уравнение, которое дано выше, и решить. Жаль, что картинка не вставляется, понятнее было бы.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5см и 4см, считая от основания. Найдите периметр треугольника.
Пусть РО=МО=х, тогда из пропорции: МС/АС=MP/AB=MO/AB=x/(√2/2)=x√2⇒
MC = AC·x√2 = x√2
по т. Косинусов из треугольника ВМС
BC² = MC² + MB² - 2MC . MB cos135
Получим уравнение: 10х²+4х√2-1=0⇒х=√2/10
Тогда МВ=3√2/5, МС=1/5
SABC = 5/4SAMB=3/10