1. По рисунку треугольник АВС прямоугольный. Сумма острых углов равна 90°. Следовательно, <A=45°. треугольник равнобедренный (углы при основании равны). Значит ВН - высота, медиана и биссектриса. Треугольник ВНС - равнобедренный и ВН = СН = 7:2 = 3,5 см.
ответ: <A = 45°, ВН = 3,5 см.
2. Треугольники МNK и MKP равны по гипотенузе (дано) и катету (МК - общий). Следовательно, МР = NK. Угол MNK = 60°, следовательно, <NMK=30° (по сумме острых углов). Катет, лежащий против угла 30° равен половине гипотенузы. NK= 12 см = МР.
ответ: МР = 12 дм.
1. По рисунку треугольник АВС прямоугольный. Сумма острых углов равна 90°. Следовательно, <A=45°. треугольник равнобедренный (углы при основании равны). Значит ВН - высота, медиана и биссектриса. Треугольник ВНС - равнобедренный и ВН = СН = 7:2 = 3,5 см.
ответ: <A = 45°, ВН = 3,5 см.
2. Треугольники МNK и MKP равны по гипотенузе (дано) и катету (МК - общий). Следовательно, МР = NK. Угол MNK = 60°, следовательно, <NMK=30° (по сумме острых углов). Катет, лежащий против угла 30° равен половине гипотенузы. NK= 12 см = МР.
ответ: МР = 12 дм.
Поделитесь своими знаниями, ответьте на вопрос:
Точка Т середина отрезка МР.Найдите координаты центра точки Р, если Т (-2;4)и(-6;-7)
Координаты середины отрезка ищутся как полусумма координат концов этого отрезка, т.е. х=(-2-6)/2=-4; у= (4-7)/2=-1.5
ответ Т(-4;-1.5)