Объяснение:
1.Угол, вершина которого лежит в центре окружности называется
А) центральным;
2. Угол, вершина которого лежит на окружности называется
Б) вписанным;
3. Вписанный угол равен
В) половине дуги на которую он опирается.
4. Центральный угол равен
Б) дуге, на которую он опирается;
5. Чему равен вписанный угол, опирающийся на дугу в 120°
Б) 60°;
6. Чему равен центральный угол, опирающийся на дугу в 40°
В) 40°
7. Чему равен вписанный угол, опирающийся на дугу в 100°
А) 50°;
8.Чему равен центральный угол, опирающийся на дугу в 80°
Б) 80°;
Запишите ответ (задания 9-12):
9. Найдите <DEF, если градусные меры дуг DE и EF равны 150° и 68° соответственно.
<DEF опирaтeся на дугу = 360°-(DE + EF)=360°-( 150° + 68° ) =142°.
<DEF - вписанный угол,
<DEF=1/2×142°=71°
10. Найдите <KOM, если известно, что градусная мера дуги MN равна 124°, а градусная мера дуги KN равна 180°. Точка O — центр окружности.
υMK=υKN-υMN=180°-124°=56°
<KOM - центральный угол,<KOM=56°
11. Треугольник ABC вписан в окружность с центром в точке O. Найдите градусную меру угла C треугольника ABC, если угол AOB равен 48°.
<C - вписанный угол,= половине центральнoго углa AOB.
<C=1/2<AOB=1/2*48°=24°
12. Точка О — центр окружности, <AOB = 84° (см. рисунок). Найдите величину угла ACB (в градусах). Дай рисунок.
Поделитесь своими знаниями, ответьте на вопрос:
У АВС : угол С=90;АС=8 см ;В=30*Розвязати цей трикутник
пусть K∈AB; M∈BC; N∈AC.
Радиусы в точку касания образуют прямые углы с касательными:
OK⊥AB; OM⊥BC; ON⊥AC
Градусная мера дуги окружности равна градусной мере центрального угла, который опирается на эту дугу. ⇒
∠MON = ∪MN = 110°
∠KON = ∪KN = 120°
Сумма углов четырехугольника
(n - 2)*180°=(4 - 2)*180° = 2*180° = 360°
Четырехугольник CMON.
∠С = 360° - ∠ONC - ∠OMC - ∠MON =
= 360° - 90° - 90° - 110°= 70°
Четырехугольник AKON.
∠A = 360° - ∠OKA - ∠ONA - ∠KON =
= 360° - 90° - 90° - 120°= 60°
ΔABC: ∠B = 180° - ∠A - ∠C = 180° - 70° - 60° = 50°
ответ: углы треугольника 50°, 60°, 70°