следующий раз задавай задачи по 1-2, а то долгл всех ждать
1) ha= ( 1/2 * sqrt p (p−a) (p−b) (p−c) ) / a ha=20cm
r= (sqrt(p−a)(p−b)(p−c)) / p r=2cm
R= abc / ( 4 sqrt (p(p−a)(p−b)(p−c) ) R= 18 1/4 cm
2) r= h / 2 h= 2r h=4cm
рассмотрим АВН-прямоугольный египетский ( ВН -высота) , т.е соотношение сторон 3: 4: 5 АН=3см
В четырехугольник окружность можно вписать только в том случае, если суммы его противоположных сторон равны. т.е.: AB+DC= AD+BC = 10см
пусть ВС=х см х +(3+х+3 )= 10см х=2см
BC = 2см AD =8см 3) АВСД= ромб d1=14cm a =25cm, находим d2 = 24*2=48cm r= sqrt ( (d1/2)^2 +( d2/2)^2) r=12cm 4)ABC -прямоугольный С=90* АС=12х ВС=5х по тПифагора АВ=13х R-r = 18cm r=sqrt ( ((p−a)(p−b)(p−c) / p ) r=2x R= 1 / 2 sqrt (a^2+ b^2) R=6.5x R-r=4.5x=18 x= 4 => R=6.5 * 4=26cm r=2 * 4=8cm 5) S=1/2a*b c=8cm, r=3см проведем OT,ОМ и ОК -радиусы к точкам касания, ОМ_|_CB OT_|_AB OK_|_AC => CM=CK=r=3cm по свойству касательных из одной точки к окр АК=АТ ВТ=ВМ , пусть АТ=х тогда ТВ=8-х дальше легко, давай сам
ответ: гипотенуза =20см
Объяснение: по свойствам угла 30°, катет лежащий напротив него равен половине гипотенузы. Меньший катет будет как раз он, потому что второй острый угол будет 60°, а наибольшая сторона лежит напротив большего угла и наоборот, поэтому катет, который лежит против угла 30° и будет наименьшим. Пусть тогда он будет "х", тогда гипотенуза будет 2х. Так как в сумме они составляют 30см, составляем уравнение:
х+2х=30
3х=30
х=30÷3
х=10; меньший катет=10. Теперь найдём гипотенузу: 2×10=20см.
Поделитесь своими знаниями, ответьте на вопрос:
Площадь прямоугольного треугольника равна 77 а один из его катетов на 3 больше другого найдите меньший катет
Меньший б
Гипотенуза с
Тогда S = a*b/2 = 77 => 154 = a*b
a = b + 3
154 = b( b + 3 ) = b^2 + 3b => b^2 + 3b - 154 = 0
D = 9 + 616 = 625
b = (-3 + 25)/2 = 11
b = (-3 - 25)/2 = -14
b = 11 => a = 11 + 3 = 14
ответ: 11