Долбоебков_Алексей27
?>

Постройте треугольник со сторонами 7 см и 5 см и с углом между ними в 70 ̊ и проведите серединные перпендикуляры с каждой стороны. ответьте на во Пересекаются ли все серединные перпендикуляры в одной точке? Могу ли я построить окружность с центром в точке пересечения серединных перпендикуляров и проходящая через вершины треугольника? Как бы вы могли эту окружность назвать? (Определение 1)

Геометрия

Ответы

natura-domA90

Известно, что прямая пересекает плоскость, если она не принадлежит этой плоскости и не параллельна ей. Следуя приведенному ниже алгоритму, найдем точку пересечения прямой a с плоскостью общего положения α, заданной следами h0α, f0α.

Алгоритм

Через прямую a проводим вс фронтально-проецирующую плоскость γ. На рисунке обозначены её следы h0γ, f0γ.

Строим проекции прямой AB, по которой пересекаются плоскости α и γ. В данной задаче точка B' = h0α ∩ h0γ, A'' = f0α ∩ f0γ. Точки A' и B'' лежат на оси x, их положение определяется по линиям связи.

Прямые a и AB пересекаются в искомой точке K. Её горизонтальная проекция K' = a' ∩ A'B'. Фронтальная проекция K'' лежит на прямой a''.

Точка пересечения прямой и плоскости

Алгоритм решения останется тем же, если пл. α будет задана параллельными, скрещивающимися прямыми, отсеком фигуры или другими возможными .

Видимость прямой a относительно плоскости α. Метод конкурирующих точек

Определение видимости прямой

Отметим на чертеже фронтально-конкурирующие точки A и С (рис. ниже). Будем считать, что точка A принадлежит пл. α, а С лежит на прямой a. Фронтальные проекции A'' и С'' совпадают, но при этом т. A и С удалены от плоскости проекций П2 на разное расстояние.

Найдем горизонтальные проекции A' и C'. Как видно на рисунке, точка C' удалена от плоскости П2 на большее расстояние, чем т. A', принадлежащая пл. α. Следовательно, участок прямой а'', расположенный левее точки K'', будет видимым. Участок a'' правее K'' является невидимым. Отмечаем его штриховой линией.

Отметим на чертеже горизонтально-конкурирующие точки D и E. Будем считать, что точка D принадлежит пл. α, а E лежит на прямой a. Горизонтальные проекции D' и E' совпадают, но при этом т. D и E удалены от плоскости П1 на разное расстояние.

Определим положение фронтальных проекций D'' и E''. Как видно на рисунке, точка D'', находящаяся в пл. α, удалена от плоскости П1 на большее расстояние, чем т. E'', принадлежащая прямой a. Следовательно, участок а', расположенный правее точки K', будет невидимым. Отмечаем его штриховой линией. Участок a' левее K' является видимым.


Найти точку пересечения прямой общего положения с проецирующей прямой
Найти точку пересечения прямой общего положения с проецирующей прямой
elenak26038778
1
Одна сторона х, другая (х+7)
Р=х+(х+7)+х+(х+7)  что равно 80 по условию
Уравнение
х+(х+7)+х+(х+7) =80
4х+14=80      ⇒  4х=66    х=16,5
(х+7)=16,5+7=23,5
ответ. 16,5 и 23,5
2
S= \frac{1}{2}a\cdot b= \frac{1}{2}\cdot 7\cdot 3=10,5 \\ c ^{2}=a ^{2}+b ^{2}=3 ^{2}+7 ^{2}=9+49=58, \\ c= \sqrt{58}
3
Площадь треугольника АВС находим по формуле Герона АС=9+6=15 см
р=(13+14+15)/2=21
S= \sqrt{21(21-13)(21-14)(21-15)}= \sqrt{7056}=84
Так как площадь треугольника равна половине произведения основания на высоту, найдем высоту, проведенную к АС=15 см
S= \frac{1}{2}AC\cdot h
h=2·84/15=11,2 см
S(Δ ABK)=(1/2)AK·h=(1/2)·6·11,2=33,6 кв см
S(ΔBKC)=84-33,6=50,4 кв. см
4
Сумма углов, прилежащих к боковой стороне трапеции 180°. угол В равен 150°, значит угол А - 30°
Проведем высоту ВК. Получим прямоугольный треугольник, угол А равен 30°.
В прямоугольном треугольнике катет против угла в 30° равен половине гипотенузы. ВК=4 см
S= \frac{BC+AD}{2}\cdot BK= \frac{10+26}{2}\cdot 4=72 кв см

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Постройте треугольник со сторонами 7 см и 5 см и с углом между ними в 70 ̊ и проведите серединные перпендикуляры с каждой стороны. ответьте на во Пересекаются ли все серединные перпендикуляры в одной точке? Могу ли я построить окружность с центром в точке пересечения серединных перпендикуляров и проходящая через вершины треугольника? Как бы вы могли эту окружность назвать? (Определение 1)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Банова_Елена431
sohrokova809
windless-el
Lolira64
Тинчурина1528
rada8080
Abdulganieva1367
Дмитрий Бундин
kozhevniks
yulyashka2142
zakup-r51
andreevaalisa
wwladik2606222
Иванович
Алена-Петрова285