В прямоугольнике ABCD проведена биссектриса угла A до пересечения со стороной BC в точке K. Отрезок AK=8 см, угол между диагоналями прямоугольника равен 30°. Найдите стороны и площадь прямоугольника ABCD.
Обозначим точку пересечения диагоналей О.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.
∆АОВ и ∆COD - равнобедренные, углы при АВ и CD равны по (180°-30°):2=75°⇒
в ∆ АВС ∠BСA=90°-75°=15°
∆ АВК - прямоугольный с острым углом ВАК=45°⇒
∠ВКА=45° ⇒ ∆ АВК равнобедренный.
АВ=АК*sin45°=(8*√2)/2=4√2 см
В ∆ АВС по т.синусов
АВ:sin15°=BC:sin75°
По таблице синусов
sin 15° =0,2588
sin75°=0,9659
4√2:0,2588=ВС:0,9659⇒
ВС=21,1127 см
S=AB•ВС=4√2•21,1127≈ 119,426 см²
------
Как вариант:
Найти из прямоугольного ∆ АВС диагональ АС:
АС=АВ:sin 15º=(4√2):0,2588
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
S=0,5•d₁•d₂•sinφ , где
d₁ и d₂ – диагонали, φ – любой из четырёх углов между ними/
Тогда S=0,5•{4√2):0,2588}²•0,5=≈ 119,426 см²
Поделитесь своими знаниями, ответьте на вопрос:
Какой из векторов равен сумме векторов AB и D1D
Длина средней линии трапецыи становит 4+9=13см. Отсюда мы можем найти суму основ трапецыи, за формулой про нахождения средней линии трапецыи (средняя линя равняеться полсуме основ- (ВС+АД)/2=МН), отсюда ВС+АД=13*2=26см.
Расмотрим треугольник АВС, у него: диагональ АС делит среднюю линию на две равных части, отсюда МО-средняя линия этого треугольника, а значит она равна половине линии, которая ей лежит паралельно(линии ВС)=4*2=8см.- это меньшее основание, теперь мы можем найти большее основание: 26-8=18см.
ответ:8см., 18см.