Точка M, равноудалена от вершин треугольника ABC, поэтому она лежит на перпендикуляре к (ABC), который восстановлен из центра (O) описанной около ΔABC окружности. Треугольник со сторонами 6, 8, 10 является египетским (10²=6²+8²), поэтому ∠B=90°, а значит центр описанной лежит на середине AC. И её радиус равен AC:2=10:2=5.
Как было сказано ранее MO⊥(ABC).
Рассмотри прямоугольный ΔAOM (∠O=90°): AO=5; AM=13. Найдём второй катет MO (расстояние от M до α) по теореме Пифагора (хотя тут опять Пифагорова тройка 5, 12, 13).
Высоту АН нужно провести на продолжение стороны ВС (иначе нельзя, т.к. угол В в треугольнике АВС тупой). Тогда образуется прямоугольный треугольник АНВ. В нём угол АНВ - прямой. Углы АВН и АВС (это угол В треугольника АВС) являются смежными и в сумме дают 180 градусов. Значит, угол АВН равен 45 градусов (т.к. угол АВС = 135 градусов по условию). Значит, треугольник АНВ - равнобедренный (так как третий угол в этом треугольнике тоже будет 45 градусов!). В этом треугольнике АВ - гипотенуза, а АН и НВ - катеты. Они равны. Примем любой из них за "х". По т. Пифагора: x^2 + x^2 = 12^2 2x^2 = 144 x^2 = 72 x = 6 корней из 2. Значит, АН равно 6 корней из 2
Точка M, равноудалена от вершин треугольника ABC, поэтому она лежит на перпендикуляре к (ABC), который восстановлен из центра (O) описанной около ΔABC окружности. Треугольник со сторонами 6, 8, 10 является египетским (10²=6²+8²), поэтому ∠B=90°, а значит центр описанной лежит на середине AC. И её радиус равен AC:2=10:2=5.
Как было сказано ранее MO⊥(ABC).
Рассмотри прямоугольный ΔAOM (∠O=90°): AO=5; AM=13. Найдём второй катет MO (расстояние от M до α) по теореме Пифагора (хотя тут опять Пифагорова тройка 5, 12, 13).
MO=√(13²-5²) = √((13+5)(13-5)) = √(18·8) = √(3²·4²) = 12
ответ: 12.