Дано:
S = 27 (см²);
P = 28 (см);
h = ? (см), в 3 раза меньше стороны, к которой она опущена.
Найти:
h; a; b.
Пусть x (см) равна высота, тогда сторона, которой проведена эта высота будет равна (3 · x) (см). Площадь данного параллелограмма равна 27 (см²) (по условию задачи).
Исходя из данных условий, составим уравнение, выделяя три этапа математического моделирования.
Этап №I. Составление математической модели:
3x · x = 27
Этап №II. Работа с математической моделью:
3x · x = 27
3x² = 27
x² = 27 : 3
x² = 9
x = ± √9
Этап №III. ответ математической модели:
x = ± 3
Итак, уравнение показало два ответа: x₁ = 3; x₂ = - 3. Так как ВЫСОТА НЕ МОЖЕТ БЫТЬ ОТРИЦАТЕЛЬНЫМ ЧИСЛОМ, то h = 3 (см).
Поскольку в уравнении сторона, на которую была опущена высота была равна (3 · x) (см), то подставим вместо переменной "x" найденную высоту и найдём второй ответ на вопрос задачи: a = 3 · x = 3 · 3 = 3² = 9 (см).
Осталось только найти третий ответ на вопрос задачи - чему равна сторона "b"? По формуле периметр включает в себя и сторону "a", и сторону "b"! Она выглядит так: P = 2 · (a + b). А значит, мы можем снова составить уравнение, выделяя три этапа математического моделирования.
Пусть b (см) равняется вторая сторона параллелограмма.
Этап №I. Составление математической модели:
2 · (9 + b) = 28
Этап №II. Работа с математической моделью:
2 · (9 + x) = 28
2 · 9 + 2 · b = 28
18 + 2b = 28
2b = 28 - 18
2b = 10
b = 10 : 2
Этап №III. ответ математической модели:
b = 5
Т.к. ответ уравнения число положительное, то мы получили третий ответ на вопрос задачи.
ответ: h = 3 (см); a = 9 (см); b = 5 (см).
Задание 2. а)Угол КАВ, образованный касательной АК и хордой АВ, проходящей через точку касания А, равен половине величины дуги АВ, заключённой между его сторонами, центральный угол АОВ тоже опирается на дугу АВ, а угол АСВ- вписанный угол, опирающийся на дугу АВ, поэтому равен половине величины центрального угла.
б)Т.о., углы АСВ и КАВ равны. А т.к. АК и КВ - отрезки касательных, проведенных из одной точки к одной окружности, то АК=КВ, т.е. ΔКАВ- равнобедренный.
в) т.к. по условию АС║КВ, то по свойству внутренних накрест лежащих при указанных параллельных прямых и секущей АВ ∠АВК=∠ВАС. значит, по двум углам треугольники КАВ и АСВ подобны, значит, сходственные стороны у них пропорциональны. АВ/ВС=АК/АС=к- коэффициент пропорциональности , Площадь треугольника АВС равна ВС*АС*sin∠ACB; площадь треугольника КАВ равна
АК*АВ*sin∠КАВ. Синусы равных углов равны. Отношение площадей (АК*АВ*sin∠КАВ)/(BC*АС*sin∠ACB)=АК*АВ/ВС*АС=к²; получается, что от угла не зависит отношение. Это для любого треугольника, а если к тому же треугольник АВС равнобедренный с основанием АВ, то все углы в нем по 60°, т.е. он получается равносторонним. т.е. угол и выбирать не надо по этому условию он уже определен. А из того, что угол равен 60°, следует равенство данных треугольников, значит, отношение их площадей равно единице.
Поделитесь своими знаниями, ответьте на вопрос:
Площадь параллелограмма равна 27 см, а его периметр равен 28 см. Высота, проведённая к одной из его сторон, в 3 раза меньше, чем эта сторона. Вычисли: 1) данную высоту, 2) сторону, к которой она проведена; 3) вторую сторону параллелограмма. ответы: 1) высота равна CM 2) сторона, которой проведена высота, равна 3) вторая сторона равна
ответ: высота=3см, сторона, к которой, проведена высота=9см, вторая сторона =5см
Объяснение: пусть высота СМ=х, тогда АД=3х. Составляем уравнение:
х×3х=27
3х²=27
х²=27÷3
х²=9
х=3; высота СМ=3см.
Найдём АД: АД=3×3=9см
Найдём вторую сторону, зная периметр: пусть АВ=y, тогда:
y+y+9+9=28
2y+18=28
2y=28-18
2y=10
y=10÷2
y=5; вторая сторона=5см