Прямая теорема:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Обратная теорема:
Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.
Противоположная теорема:
Если при пересечении двух прямых секущей накрест лежащие углы не равны, то прямые не параллельны.
2.Прямая теорема:
Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
Обратная теорема:
Если две параллельные прямые пересечены секущей, то соответственные углы равны.
Противоположная теорема:
Если при пересечении двух прямых секущей соответственные углы не равны, то прямые не параллельны.
3.Прямая теорема:
Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.
Обратная теорема:
Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
Противоположная теорема:
Если при пересечении двух прямых секущей сумма односторонних углов не равна 180°, то прямые не параллельны.
Поделитесь своими знаниями, ответьте на вопрос:
Основанием пирамиды является многоугольник, площадь которого 100. Найдите плозадь сечения , проходящего через середину высоты боковой грани параллельно плоскости основания . Объясните свое решение. Напишите построение, доказательство построения и само решение. То есть три этапа
7х = 7·0,5 = 3,5 см; 6х = 6·0,5 = 3 см; 3х = 3·0,5 = 1,5 см
Відповідь: 3,5см, 3 см, 1,5 см.
2. Знайдемо одну частину 6 : 3 = 2 см, тоді 7·2 = 14 см, 6·2 = 12 см.
Відповідь: 14 см, 12 см, 6 см.
3. Знайдемо одну частину 28 : 7 = 4 (см), тоді 6·4 = 24 см, 3·4 = 12 см
Відповідь: 28 см, 24 см, 12 см.
4. Різниця двох сторін складає 7 - 3 = 4 частини, що становить 20 см, тоді одна частина 20 : 4 = 5(см), Маємо 7·5 = 35 см, 6·5 = 30 см, 3·5 = 15 см
Відповідь: 35 см, 30 см,15 см.