Треугольники АВС и ADC лежат в разных плоскостях, АВ=ВС=AD=CD=4 см, АС=6 см .BD=√21 см. Найдите угол между плоскостями АВС и ADC.
Объяснение:
1 ) Пусть ВН⊥АС .Тогда ВН-медиана ,тк ΔАВС-равнобедренный , и АН=НС = 3 см.
ΔВСН-прямоугольный , по т Пифагора ВН=√(СН²- ВС²)=√(16-9)=√7 (см).
2)Отрезок DH-медиана для ΔАDC, тк Н-середина АС.Тогда для ΔCDH по т. Пифагора DH=√7 см.
Медиана DH для ΔСDH является высотой по свойству медианы равнобедренного треугольника.
3)Тк.DH⊥AC,BH⊥AC , то ∠ВНD- линейный угол двугранного угла между плоскостями АВС и ADC.
По т. косинусов DB²=DH²+BH²-2*DH*BH*cos (∠BHD),
(√21)²= 2*(√7)²-2*√7*√7 *cos (∠BHD),
21=14-14*cos (∠BHD) , -14cos (∠BHD)=7 , cos (∠BHD)= - 1/2.
∠BHD=120° .
Поделитесь своими знаниями, ответьте на вопрос:
На окружности поставлены три точки A, B и C так, что длина дуги AB равна 152 см, длина дуги BC равна 140 см, длина дуги CA равна 68 см. Найти наименьший угoл треугольника ABC.
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.