tetralek
?>

1. Две прямые касаются окружности с центром О в точках А и В и пересекаются в точке С. Найдите угол между этими прямыми, если 0 ∠ABO = 40 .​

Геометрия

Ответы

Arsen-araqelyan20164

ОТВЕТ

<С=80°

Обяснение


1. Две прямые касаются окружности с центром О в точках А и В и пересекаются в точке С. Найдите угол
sakh2010kprf7

1. а) Если прямая параллельна оси Ох, то ордината ( у ) в любой точке на этой прямой одинакова и равна 3 => у = 3 ( рис. 1 )

б) Если прямая параллельна оси Оу, то абцисса ( х ) в любой точке на этой прямой одинакова и равна 2 => х = 2 ( рис. 2 )

2. Рисунок 3

3у + 1 = 0 => у = - 1/3 ( зел. прямая )

3х - у - 2 = 0 => у = 3х - 2 ( фиол. прямая )

Две прямые пересекаются в одной точке, координаты которой являются общими и для первой и для второй прямой. В этой точке абцисса и ордината двух прямых равны =>

3х - 2 = - 1/3

3х = 2 - 1/3

3х = 5/3

х = 5/9 ; у = - 1/3

Значит, координаты точки пересечения двух прямых - A( 5/9 ; - 1/3 )

Составим уравнение прямой, проходящей через точку А( 5/9 ; - 1/3 ) параллельно прямой y = x+1.

По-первых, у = kx + b - линейная функция, где k - угловой коэффициент.

Во-вторых, есть формула, по которой можно составить искомое уравнение прямой, параллельной другой прямой:

у - у0 = k • ( x - x0 ) , где А( х0 ; у0 )

y - ( - 1/3 ) = x - 5/9

y + 1/3 = x - 5/9

y = x - 8/9

Составим уравнение прямой, проходящей через точку А( 5/9 ; - 1/3 ) перпендикулярно прямой y = x+1.

у - у0 = ( - 1/k ) • ( x - x0 ) , где А( х0 ; у0 )

y - ( - 1/3 ) = - ( x - 5/9 )

y + 1/3 = - x + 5/9

y = - x + 2/9

3. Рисунок 4

y = x - 2 ( оранж. прямая )

x - 5y + 6 = 0 => y = ( x + 6 ) / 5 ( син. прямая )

Найдём координаты точки пересечения этих прямых:

х - 2 = ( х + 6 ) / 5

5х - 10 = х + 6

4х = 16

х = 4

у = х - 2 = 4 - 2 = 2

Значит, координаты точки пересечения двух

прямых - А( 4 ; 2 )

Диагональ параллелограмма проходит через точку А( 4 ; 2 ) и по условию также через начало координат О( 0 ; 0 ). Получаем уравнение прямой для первой диагонали

параллелограмма АС:

у = kx , A( 4 ; 2 )

k = y/x = 2/4 = 1/2 => y = x / 2

Точка О( 0 ; 0 ) - точка пересечения диагоналей параллелограмма. Диагонали параллелограмма точкой пересечения делятся пополам. Отложим отрезок ОС, равный отрезку АО => получаем точку С ( - 4 ; - 2 ). Противоположные стороны параллелограмма параллельны. Составим уравнение прямой, проходящей через точку С( - 4 ; - 2 ) параллельно прямой y = ( х + 6 ) / 5

у - у0 = k • ( x - x0 )

y - ( - 2 ) = ( 1/5 ) • ( x - ( - 4 ) )

y + 2 = ( 1/5 ) • ( x + 4 )

y = ( x/5 ) + ( 4/5 ) - 2

y = ( x/5 ) - ( 6/5 )

y = ( x - 6 ) / 5 ( фиол. прямая )

Составим уравнение прямой, проходящей через точку C( - 4 ; - 2 ) параллельно прямой y = x - 2.

у - у0 = k • ( x - x0 )

у - ( - 2 ) = х - ( - 4 )

у + 2 = х + 4

у = х + 2 ( зел. прямая )

Найдём координаты точки пересечения прямых у = ( х + 6 ) / 5 и у = х + 2:

х + 2 = ( х + 6 ) / 5

5х + 10 = х + 6

4х = - 4

х = - 1

у = х + 2 = - 1 + 2 = 1

Значит, координаты точки пересечения двух

прямых - В( - 1 ; 1 )

Диагональ параллелограмма проходит через точку В( - 1 ; 1 ) и по условию также через начало координат О( 0 ; 0 ). Получаем уравнение прямой для второй диагонали

параллелограмма ВD:

у = kx ; B( - 1 ; 1 )

k = y/x = 1/-1 = - 1

y = - x

4. Рисунок 5

x + y = 4 => y = 4 - x ( оранж. прямая )

x - y = 0 => y = x ( фиол. прямая )

Найдём координаты точки пересечения этих прямых:

4 - x = x

2x = 4

x = 2

y = 2

Значит, координаты точки пересечения двух

прямых - A( 2 ; 2 )

Составим уравнение прямой, проходящей через точку А( 2 ; 2 ) параллельно прямой у = ( х + 4 ) / 4 ( зел. прямая ):

у - у0 = k • ( x - x0 )

у - 2 = ( 1/4 ) • ( х - 2 )

у = ( х - 2 ) / 4 + 2

у = ( х + 6 ) / 4 ( син. прямая )

Подробнее - на -

Объяснение:

ivnivas2008
Рассмотрим треугольники AKO и CMO. Они равны как прямоугольные треугольники по катету (KO=MO) и прилежащему острому углу (KOA=MAC как противоположные углы пересекающихся прямых). Следовательно высоты поделены точкой пересечения на равные отрезки, это свойство равнобедренного треугольника. Если этого мало, то треугольник AMC равен треугольнику CKA по двум катетам (MO=KO, MC=KA из предыдущего доказательства). Следовательно в них равны и углы КАС и МСА, которые являются углами при основании, а это значит что треугольник равнобедренный

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1. Две прямые касаются окружности с центром О в точках А и В и пересекаются в точке С. Найдите угол между этими прямыми, если 0 ∠ABO = 40 .​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

stendpost
generallor3
vasilyevjob6
lionmost6979
borisovaks496
Dushko
Veronika1270
ЧумичеваГеннадьевна1827
Andreevna_Grebenshchikova155
решить геометриюот что есть ​
Mikhailovich_Viktoriya
Dato24043846
skryabinamaria
ldfenix87
Жукова_Петрович1281
Talikova164