Чтобы найти нам площадь ABCD нам надо найти высоту BH и основание AD.
1. Рассмотрим ∆ABH: sinA=BH/AB
1/2=BH/8
отсюда BH=4;
2. AD=AH+HD
cis30°=AH/AB
√(3)/2=AH/8
8√(3)=2AH
AH=4√(3)
Отсюда AD=12+4√(3)≈19
3. Площадь ABCD=BH*AD=4*19=76см².
№2
Задача. Дан параллелограмм ABCD, боковая сторона равна 4 см, диагональ соединяющая вершины тупых уголов равна 5 см и перпендикулярна к боковым сторонам. Найдите основания параллелограмма.
Диагональ делит параллелограмм на 2 прямоугольных ∆ABD и ∆BDC.
Рассмотрим ∆ABD:
По теореме Пифагора:
AD²=AB²+AD²
AD²=16+25
AD²=41
AD=√(41)
Albina
05.01.2023
По условию треугольник АВС - равнобедренный. Обозначим его равные стороны как 11х, а основание как 10х. Построим в треугольнике АВС высоту ВН. В равнобедренном треугольнике эта высота будет являться также и медианой (АН=СН=5x). Треугольники АВС и А1ВС1 подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого и углы, заключенные между этими сторонами, равны: - А1В : АВ = С1В : СВ = 1/2 (коэффициент подобия k=1/2); - угол В - общий для обоих треугольников. Зная, что отношение площадей двух подобных треугольников равно квадрату коэффициента подобия, запишем: S A1BC1 : S ABC = k² = (1/2)²=1/4, отсюда S ABC = 4*S A1BC1=4*20√6=80√6. Площадь треугольника равна половине произведения его основания на высоту: S ABC = 1/2*АС*ВН 80√6 = 1/2*10х*ВН. Выразим высоту ВН. В прямоугольном треугольнике АНВ по теореме Пифагора можно выразить ее так: BH=√AB²-AH² BH=√(11x)²-(5x)² BH=√96x²=x√16*6=4x√6. Тогда 80√6 = 1/2*10х*ВН=1/2*10х*4x√6 80√6 = 20х²√6 х²=4 х=2 Находим периметр АВС: Р АВС = 11*2+10*2+11*2=64
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Задача 3. ОК- внутрішній промінь кута АОВ. LKOB=36°, LAOK=2/3L KOB. Знайти
Объяснение:
№1
Чтобы найти нам площадь ABCD нам надо найти высоту BH и основание AD.
1. Рассмотрим ∆ABH: sinA=BH/AB
1/2=BH/8
отсюда BH=4;
2. AD=AH+HD
cis30°=AH/AB
√(3)/2=AH/8
8√(3)=2AH
AH=4√(3)
Отсюда AD=12+4√(3)≈19
3. Площадь ABCD=BH*AD=4*19=76см².
№2
Задача. Дан параллелограмм ABCD, боковая сторона равна 4 см, диагональ соединяющая вершины тупых уголов равна 5 см и перпендикулярна к боковым сторонам. Найдите основания параллелограмма.
Диагональ делит параллелограмм на 2 прямоугольных ∆ABD и ∆BDC.
Рассмотрим ∆ABD:
По теореме Пифагора:
AD²=AB²+AD²
AD²=16+25
AD²=41
AD=√(41)