1. 13
Объяснение:
1.
Проведём FH перпендикулярно DE следовательно треугольник FHE прямоугольный.Треугольник DCE прямоугольный следовательно треугольник FCE тоже прямоугольный.
EF- биссектриса следовательно угол 1 = углу 2.Следовательно FHE= FCE(по острому углу) следовательно FH=FC=13
ответ: 13
2.
Строим острый угол В. Из вершины угла проводим окружность радиусом равным катету, и отмечаем точку пересечения А. Так как треугольник — прямоугольный, то восстанавливаем перпендикуляр из точки А. Полученная точка пересечения С. Соединяем попарно вершины треугольника. Искомый треугольник построен.
(Рисунок в закрепе)
3.
Відповідь:
Пояснення:
Дано: коло O; коло O1; OB = 5; O1B1 = 3; B∈AB; B1∈AB; AB1 = 4
Знайти: OO1
Розв'язання:
Розглянемо ΔAOB і ΔAO1B1.
∠A - спільний; OB⊥AB, O1B1⊥AB (за властивістю дотичної та радіуса, проведеного в точку дотику). Отже ΔAOB подібний ΔAO1B1 (за двома кутами).
В ΔAO1B1 за теоремою Піфагора знайдемо гіпотенузу AO1
AO1^2 = AB1^2 + O1B1^2
AO1^2 = 4^2 + 3^2 = 16 + 9 = 25
AO1 = = 5
У подібних трикутниках відповідні сторони пропорційні:
OB/O1B1 = AO/AO1
5/3 = AO/5
AO = 5*5/3
AO = 25/3
OO1 = AO - AO1
OO1 = 25/3 - 5 = 10/3
OO1 ≈ 3,3
Поделитесь своими знаниями, ответьте на вопрос:
Боковое ребро правильной четырёхугольной пирамиды равно 8 см и образует с плоскостью основания пирамиды 45 градусов. Найти: а)высоту пирамиды, б)площадь боковой поверхности пирамиды
Боковое ребро правильной четырёхугольной пирамиды равно 8 см и образует с плоскостью основания пирамиды 45 градусов.
Найти: а)высоту пирамиды, б)площадь боковой поверхности пирамиды
Объяснение:
Пусть АВСМР-правильная 4-угольная пирамида , с основанием АВСМ, РА=8 см .
В правильной пирамиде вершина проецируется в центр основания ( т.О), т.е в точку пересечения диагоналей.Тогда углом между между боковым ребром и и плоскостью основания (АВС) будет ∠РАО=45°.
а) ΔАРО-прямоугольный, sin45°=РО/АР, √2/2=РО/8 ,РО=4√2 см.
И отрезок АО=4√2 см, т.к ΔАРО-равнобедренный ( ∠АРО=90°-∠РАО=90°-45°=45°).
б) S(бок.)=1/2Р(осн)*a, где а-апофема.
ΔАОМ-прямоугольный и АО=ОМ, по свойству диагоналей квадрата.
Значит по т. Пифагора АМ=√( (4√2)²+(4√2)²)=8 (см), АМ=АВ=ВС=СМ=8см.
Пусть ОН⊥АМ, тогда ОН=1/2АВ=4 см.
ΔОНР-прямоугольный , по т. Пифагора НР=√( РО²+ОН²)=√(16*2+16)=√16*3=4√3 (см). Значит а=4√3 см.
S(бок.)=1/2(4*8)*4√3=64√3 (см²)