Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
Объяснение:
Так как призма прямая, то длина ее высоты равна длине бокового ребра призмы.
Площадь боковой поверхности призмы равна:
S(бок) = S(AA₁C₁C) + S(BB₁C₁C) + S(AA₁B₁B)
Найдем боковую сторону равнобедренного треугольника в основании призмы:
Проведем высоту BH равнобедренного треугольника ABC с основанием AC.
По свойству высоты равнобедренного треугольника, проведенной к основанию, BH будет медианой, поэтому AH = CH = AC/2 = 4 см
По теореме Пифагора найдем AB:
AB = = = 5
S(AA₁C₁C) = AA₁ * AC = 6 * 8 = 48 см²
S(BB₁C₁C) = BB₁ * BC = 6 * 5 = 30 см²
S(AA₁B₁B) = AB * AA₁ = 5 * 6 = 30 см²
S(бок) = 48 см² + 30 см² + 30 см² = 108 см²
Поделитесь своими знаниями, ответьте на вопрос:
А(-6;3) В(2;3) С(4;3) Д(-6;-3) нүктелері табандары АВ мен СД болатын тікбұрышты трапецияның төбелері.Трапецияның ауданын табыңыз.
Объяснение:
Мектеп оқушыларының геометриялық есептерді нашар шығаратыны белгілі.Оның бірнеше себебі бар.Біріншіденгеометриялық есептер оқушылардан шығармашылық қасиеттерді талап етеді.Екіншіден оқушыларға берілетін теориялық мағлұматтар геометриялық есептерді шығаруды жеңілдететін жұмысшы құрал бола алмай тұр.
Жалпы геометрияда тіктөртбұрышты,ромбыны,квадратты параллелограмнан өрбітіп дамытады.Ал трапецияны « Екі қабырғасы параллель,ал былайғы екі қабырғасы параллель емес төртбұрыш трапеция деп және оның параллель қабырғалары (а,в) табандары, ал былайғы екі қабырғасы (с,d) бүйір қабырғалары деп анықтама беріледі.Трапецияның үш түрі болатындығы айтылады.(1-сурет)
1-сурет
Жоғарыда айтылғандай трапецияны да тіктөртбұрышты,ромбыны,квадрат секілді параллелограмнан таратып, трапецияның параллелограмға ұқсас түрлерінен бастап, белгілі трапецияларды айтар болсақ, трапеция тақырыбының ауқымы арта түсері анық.
Осы орайда мектебімізде үйірме сабақтарында трапецияның оқулықтарда айтыла бермейтін түрлері мен қасиеттері үйретілген еді. Солардың бірі мынадай:
1-теорема.Тең бүйірлі трапецияның диагональдары өзара перпендикуляр болса,онда трапецияның орта сызығы биіктікке тең болады.
Дәлелдеуі:Трапецияның ауданы екі үшбұрыштың аудандарының қосындысына тең.
∆АОВ,∆СОД-тең бүйірлі тікбұрышты үшбұрыштар АО2 +ОВ 2=а2,2АО2=a2
CO2+OD2=в2,2СО2 =в2. АД=ВС=
(*) формуласына қойсақ, онда
Трапецияның ауданы екеуін теңестіріп,бұдан
Теорема дәлелденді.
1.есеп №293 (B деңгей)
Бер:АВСД –тең бүйірлі трапеция.
АВ =24 см
ДС=40 см
АД┴ВС
т/к: SABCD
Шешуі:1 теорема бойынша МN=ВК
.S=32*32=1024см2
Жауабы: S=1024 cм22-теорема.Кез келген трапецияның екі табанының қосындысы оның диагоналдарының үлкен табанға түсірілген проекцияларының қосындысына немесе айырмасына тең болады.
Оны формула түрінде берсек: а+в= d11d12
Трапеция тең бүйірлі болғанда,оның диагональдары тең болатыны және диагональдарының үлкен табанға түсірілген проекциялары да тең болатыны белгілі. Трапецияның ауданын есептейтін формуласына қою арқылымына формула шығады.S= t*һ (1),мұндағы t- диагоналдың үлкен табанға түсірілген проекциясы, һ-трапецияның биіктігі.
2-есеп.Тең бүйірлі трапецияның диагоналы 10см-ге, ал ауданы 48см2-ге тең. Трапецияның биіктігін табыңдар
Берілгені: АС=10cм,S=48 см2
Табу керек:СН
Шешуі: ∆ ACN
AH=Оны (1) формулаға қойып,теңдігі шығады.Бұдан
(100-СН2)*СН2=2304,СН4-100СН2+2304=0
СН2=х деп алсақ,х2-100х+2304=0
Х=50
Х1=36,Х2=64.Яғни, биіктік 6см және 8см.
3-теорема.Кез келген трапецияның диагональдарының квадраттарының айырмасы олардың үлкен табанға түсірілген проекцияларының квадраттарының сәйкес айырмасына тең болады.
Оны формула түрінде берсек: d21-d22=(d11)2–(d12)2 (2)
3-есеп. Трапецияның табандары 5 пен 15-ке, ал диагоналдары 12 мен 16-ға тең. Трапецияның ауданын табыңыз.
Берілгені:АС= 12, BD =16, BC=5, AD=15
Табу керек:S-?
Шешуі:Жоғарыдағы (2) қасиетті пайдалансақ BD2 – AC2= KD2 – AH2. Бұдан ( KD- AH) (KD+AH) = 256-144, ал (1) қасиет бойынша KD+AH=AD+BC, яғни KD+AH = 20.
Орындарына қойғанда KD- AH = 5,6 шығады KD = KH+HD, AH= KH+AK болғандықтан 5+ HD – 5 – AK = 5,6, HD – AK =5,6. Ал AK + HD =10
жүйесінен HD =7,8 табылады.
KD = 7,8 + 5=12,8.
BK2 = BD2 – KD2ВК = = 9,6Sтр ==96
4 – есеп.Тең бүйірлі трапецияның ең үлкен қабырғасы 13-ке, ал периметрі 28-см-ге тең. Трапецияның ауданы 27-ге тең болса, оның қабырғаларын табыңдар.
Берілгені: AD \\ BC, AB = CD, AD =13 P=28, S =27,
Табу керек.AB = CD, BC, AD