∆АВС – прямоугольный с прямым углом АВС по условию;
Сумма острых углов в прямоугольном треугольнике равна 90°, тогда угол АСВ=90°–угол ВАС=90°–45°=45°.
Получим что угол ВАС=угол АСВ, следовательно ∆АВС – равнобедренный с основанием АС.
Тогда АВ=ВС=100.
∆ABD – прямоугольный с прямым углом ABD по условию.
Сумма острых углов в прямоугольном треугольнике равна 90°, значит угол ADB=90°–угол BAD=90°–60°=30°.
В прямоугольном треугольнике против угла в 30° лежит катет, вдвое меньший гипотенузы.
Тоесть АВ=0,5*АD => АD=2*АВ=2*100=200.
По теореме Пифагора в прямоугольном ∆АВD:
AD²=AB²+BD²
200²=100²+BD²
40000–10000=BD²
BD=√30000
(BD=–√30000 не может быть, так как длина всегда положительна)
BD=100√3
CD=BD–ВС=100(√3)–100=100((√3)–1)
ответ: 100((√3)–1)
Bologova Golovach1989
01.03.2022
1.По теореме Пифогора находим: Гипотенуза в кв=(15*15)+(3*3) Гипотенуза в кв=225+9 Гипотенуза в кв=234 Гипотенуза=3√26
S=(15*3)/2=45/2=22,5
2.S=(15*12)/2=180/2=90
Для того,чтобы найти Р ,сначала нужно найти сторону ромба. Итак, у ромба диагонали перпендикулярны и точкой пересечения делятся пополам. В итоге получаются четыре прямоугольных треугольника. Нам понадобится только одна. Итак,обозначим треугольник ACB,где угол С=90, АС=7,5; СВ=6. Тогда,по тереме Пифагора: АВ в кв=(7,5*7,5)+(6*6) АВ в кв=56,25+36 АВ в кв=92,25 АВ=15√41
Тогда Р=15√41*4=60√41
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дана окружность с центром O. Точки M и N - середины хорд AB и AC соответственно. Найдите угол BOC, если угол MON равен 80◦
∆АВС – прямоугольный с прямым углом АВС по условию;
Сумма острых углов в прямоугольном треугольнике равна 90°, тогда угол АСВ=90°–угол ВАС=90°–45°=45°.
Получим что угол ВАС=угол АСВ, следовательно ∆АВС – равнобедренный с основанием АС.
Тогда АВ=ВС=100.
∆ABD – прямоугольный с прямым углом ABD по условию.
Сумма острых углов в прямоугольном треугольнике равна 90°, значит угол ADB=90°–угол BAD=90°–60°=30°.
В прямоугольном треугольнике против угла в 30° лежит катет, вдвое меньший гипотенузы.
Тоесть АВ=0,5*АD => АD=2*АВ=2*100=200.
По теореме Пифагора в прямоугольном ∆АВD:
AD²=AB²+BD²
200²=100²+BD²
40000–10000=BD²
BD=√30000
(BD=–√30000 не может быть, так как длина всегда положительна)
BD=100√3
CD=BD–ВС=100(√3)–100=100((√3)–1)
ответ: 100((√3)–1)