Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
Поделитесь своими знаниями, ответьте на вопрос:
Длинное основание kd равнобедренной трапеции kfcd равно 24 см, короткое основание fc и боковые стороны равны. определи периметр трапеции, если острый угол трапеции равен 65°.
Угол между высотами, выходящими (например, тут полный произвол в обозначениях) из вершин углов A и B; равен 180 - С;
Это можно просто сосчитать, как 180 - (90 - A) - (90 - B) = A + B = 180 - C;
а можно просто заметить, что четырехугольник, образованный сторонами угла С и высотами (ну кусочками), выходящими из углов A и B, очевидно является вписанным (да даже еще проще - в нем два угла прямых).
а можно просто заметить, что у угла С и угла между высотами СТОРОНЫ ПЕРПЕНДИКУЛЯРНЫ. :)
Поэтому в обоих треугольниках напротив общей их стороны AB лежат углы, синусы которых равны.
Поэтому (по теореме синусов) равны радиусы окружностей, описанных вокруг этих треугольников.