Вычислить площадь полной поверхности и объём прямой правильной четырёхугольной призмы, если сторона основания равна 10см., а диагональ боковой грани равна 25 см.
1) площадь прямоугольника = 2 * 4 = 8 см² Sквадрата = d² / 2 d = √2S (всё под корнем) d = √2*8 = √16 = 4 диагональ квадрата - 4 см
2) не уверена, но вроде можно так. Дан ромб ABCD и AB=AC Стороны ромба равны (по определению) AB=BC=CD=AD Поэтому AB=BC=AC Следовательно треугольник АВС равносторонний (правильный) (по определению равностороннего треугольника) Все углы равностороннего треугольника равны 60 градусов, поэтому угол В равен 60 градусов (острый угол ромба)
Рисунок через редактор у меня вставить не получается, но... Проводим из центра окружности - точки О к точке B прямую. Треугольники OBC и OAB равны по катету (катет OC = OA = r, также угол OCB = OAB, т.к. радиус, проведённый в точку касания, перпендикулярен касательной, гипотенуза OB - общая). Из равенства треугольников следует, что угол COB = OAB = 60° => угол CBO = ABO = 90° - 60° = 30° => OC = 1/2 CB, т.к. против угла в 30° лежит катет, равный половине гипотенузы, значит, CB = AB = 8 см. Pocba = 4см + 4см + 8см + 8см = 24см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вычислить площадь полной поверхности и объём прямой правильной четырёхугольной призмы, если сторона основания равна 10см., а диагональ боковой грани равна 25 см.
Sквадрата = d² / 2
d = √2S (всё под корнем)
d = √2*8 = √16 = 4
диагональ квадрата - 4 см
2) не уверена, но вроде можно так.
Дан ромб ABCD и AB=AC
Стороны ромба равны (по определению) AB=BC=CD=AD
Поэтому AB=BC=AC
Следовательно треугольник АВС равносторонний (правильный) (по определению равностороннего треугольника)
Все углы равностороннего треугольника равны 60 градусов, поэтому угол В равен 60 градусов (острый угол ромба)
Sромба = 1/2D² * tg(60°/2) = 1/2 * 10² * tg30 ° = 1/2 * 100 * √3/3 (дробь под корнем) = 50√3/3 (дробь под корнем)
я старалась :DDD