Внаслідок повороту навколо початку координат на 90° проти годинникової стрілки центр кола заданого рівняннями , переходить у деяку точку В. Знайдіть координати цієї точки. Зробити рисунок.
Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне.
Док-во:
Пусть ABCD – данный параллелограмм. Если он не является прямоугольником, то один из его углов A или B острый. Пусть для определенности A острый.
Опустим перпендикуляр AE из вершины A на прямую CB. Площадь трапеции AECD равна сумме площадей параллелограмма ABCD и треугольника AEB.Опустим перпендикуляр DF из вершины D на прямую CD. Тогда площадь трапеции AECD равна сумме площадей прямоугольника AEFD и треугольника DFC. Прямоугольные треугольники AEB и DFC равны, а значит, имеют равные площади. Отсюда следует, что площадь параллелограмма ABCD равна площади прямоугольника AEFD, т.е. равна AE•AD . Отрезок AE – высота параллелограмма, соответствующая стороне AD, и, следовательно, S = a•h . Теорема доказана.
АнжелаВасильевич
07.03.2022
Рассмотрим треугольник DAB и треугольник CBD. Найдем соотношение их соответствующих сторон: DA/CB=AB/BD=DB/CD 6/8=9/12=12/16, сократим дроби: 3/4=3/4=3/4. Получили, что стороны этих треугольников пропорциональны, значит треугольники подобны. У подобных треугольников соответствующие углы равны, значит угол ADB равен углу DBС. Но для прямых AD, BC и секущей BD – это накрест лежащие углы, а значит AD параллельна BC. AB не параллельна CD, так как если бы они были параллельны, то мы получили бы параллелограмм, а у него противолежащие стороны равны, что противоречит условию задачи. Значит наш четырехугольник – трапеция.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Внаслідок повороту навколо початку координат на 90° проти годинникової стрілки центр кола заданого рівняннями , переходить у деяку точку В. Знайдіть координати цієї точки. Зробити рисунок.
Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне.
Док-во:
Пусть ABCD – данный параллелограмм. Если он не является прямоугольником, то один из его углов A или B острый. Пусть для определенности A острый.
Опустим перпендикуляр AE из вершины A на прямую CB. Площадь трапеции AECD равна сумме площадей параллелограмма ABCD и треугольника AEB.Опустим перпендикуляр DF из вершины D на прямую CD. Тогда площадь трапеции AECD равна сумме площадей прямоугольника AEFD и треугольника DFC. Прямоугольные треугольники AEB и DFC равны, а значит, имеют равные площади. Отсюда следует, что площадь параллелограмма ABCD равна площади прямоугольника AEFD, т.е. равна AE•AD . Отрезок AE – высота параллелограмма, соответствующая стороне AD, и, следовательно, S = a•h . Теорема доказана.