В прямоугольного треугольнике может быть только один прямой угол (равен 90°) и два острых угла (меньше 90°)
⇒ ∠А и ∠В - острые.
Сумма острых углов в прямоугольном треугольнике равна 90°.
⇒ ∠В = 90° - ∠А = 90° - 41° = 49°.
KseniGum9
04.05.2023
Задача 1. S=1/2*СD*СЕ*sin(C)=(1/2)*6*8*√(3)/2=12*√(3). Задача 2. На теорему косинусов: 8^2=6^2+7^2-2*6*7*cos(a). cos(a)=(36+49-64)/84=0,25 Задача 3. Есть формула непосредственного вычисления, но я ее не помню, а где-то искать - лень. Но я могу дать решение, пусть и не самое оптимальное. длины векторов а и в соответственно равны: а=√((-4)^2+5^2))=√(41), b=√(5^2+(-4)^2))=√(41), расстояние между концами векторов равно √((-4-5)^2+(5+4)^2)=√(162). Вновь применяем теорему косинусов: (√(162))^2=(√(41))^2+(√(41))^2-2*√(41)*√(41)*cos(a), cos(a)=(41+41-162)/(2*41)=(-40/41). Задача 4. Опять на теорему косинусов. PK^2=PM^2+MK^2-2*PM*MK*cos(120°), PK=√(3^2+4^2-2*3*4*(-1/2))=√(9+16+12)=√(37). Площадь треугольника S=(1/2)*PM*MK*sin(120°)=(1/2)*3*4*√(3)/2=3*√(3). С другой стороны, S=PK*MN, откуда MN=S/PK=3*√(3)/√(37)=√(27/37).
zubov-073620
04.05.2023
Задача 1. S=1/2*СD*СЕ*sin(C)=(1/2)*6*8*√(3)/2=12*√(3). Задача 2. На теорему косинусов: 8^2=6^2+7^2-2*6*7*cos(a). cos(a)=(36+49-64)/84=0,25 Задача 3. Есть формула непосредственного вычисления, но я ее не помню, а где-то искать - лень. Но я могу дать решение, пусть и не самое оптимальное. длины векторов а и в соответственно равны: а=√((-4)^2+5^2))=√(41), b=√(5^2+(-4)^2))=√(41), расстояние между концами векторов равно √((-4-5)^2+(5+4)^2)=√(162). Вновь применяем теорему косинусов: (√(162))^2=(√(41))^2+(√(41))^2-2*√(41)*√(41)*cos(a), cos(a)=(41+41-162)/(2*41)=(-40/41). Задача 4. Опять на теорему косинусов. PK^2=PM^2+MK^2-2*PM*MK*cos(120°), PK=√(3^2+4^2-2*3*4*(-1/2))=√(9+16+12)=√(37). Площадь треугольника S=(1/2)*PM*MK*sin(120°)=(1/2)*3*4*√(3)/2=3*√(3). С другой стороны, S=PK*MN, откуда MN=S/PK=3*√(3)/√(37)=√(27/37).
ответ: 49°.
Объяснение:
Так как ∠С = 90°⇒ △АВС - прямоугольный.
В прямоугольного треугольнике может быть только один прямой угол (равен 90°) и два острых угла (меньше 90°)
⇒ ∠А и ∠В - острые.
Сумма острых углов в прямоугольном треугольнике равна 90°.
⇒ ∠В = 90° - ∠А = 90° - 41° = 49°.