1. Сумма углов выпуклого n-угольника вычисляется по формуле - 180°*(n-2) = 180°*(22-2) = 180°*20 = 3600°.
ответ: 3600°.
2. Площадь параллелограмма равна произведению высоты на сторону, к которой проведена эта высота. 25 см*8 см = 200 см^2.
ответ: 200 см^2.
3. Площадь трапеции равна произведению его высоты на полусумму оснований (по совместительству, длина средней линии равна полусумме оснований трапеции). 8 см*15 см = 120 см^2.
ответ: 120 см^2.
4. Сумма углов выпуклого n-угольника вычисляется по формуле - 180°*(n-2) = 180°*(5-2) = 180°*3 = 540°.
ответ: 540°.
5. Вторая сторона прямоугольника равна 3 см (так как прямоугольный треугольник со сторонами 5 (см) и 4 (см) - египетский). 3 см*4 см = 12 см^2.
ответ: 12 см^2.
6. Если опустим на основание высоту (которая также является биссектрисой и медианой), она поделит основание на отрезки по 8 см каждые. Высота равна 6 см (опять же, заглянем в прямоугольный треугольник со сторонами 8 (см) и 10 (см) - египетский, поэтому, второй катет равен 6 см). Площадь каждого треугольника = 6 см*8 см/2 = 24 см^2, площадь всего равнобедренного треугольника = 24 см^2*2 = 48 cм^2.
ответ: 48 см^2.
7. Площадь прямоугольника равна произведению его смежных сторон. 4 см*8 см = 32 см^2.
ответ: 32 см^2.
8. Площадь прямоугольного треугольника равна половине произведения его катетов. 5 см*10 см/2 = 25 см^2.
ответ: 25 см^2.
9. Площадь параллелограмма равна произведению высоты на сторону, к которой проведена эта высота. 6 см*8 см = 48 см^2.
ответ: 48 см^2.
10. Площадь трапеции равна произведению его высоты на полусумму оснований. Полусумма оснований - 16 см/2 = 8 см. 48 см^2 = 8 cм*h (высота) ⇒ h = 6 cм.
ответ: 6 см.
1. Сумма углов выпуклого n-угольника вычисляется по формуле - 180°*(n-2) = 180°*(22-2) = 180°*20 = 3600°.
ответ: 3600°.
2. Площадь параллелограмма равна произведению высоты на сторону, к которой проведена эта высота. 25 см*8 см = 200 см^2.
ответ: 200 см^2.
3. Площадь трапеции равна произведению его высоты на полусумму оснований (по совместительству, длина средней линии равна полусумме оснований трапеции). 8 см*15 см = 120 см^2.
ответ: 120 см^2.
4. Сумма углов выпуклого n-угольника вычисляется по формуле - 180°*(n-2) = 180°*(5-2) = 180°*3 = 540°.
ответ: 540°.
5. Вторая сторона прямоугольника равна 3 см (так как прямоугольный треугольник со сторонами 5 (см) и 4 (см) - египетский). 3 см*4 см = 12 см^2.
ответ: 12 см^2.
6. Если опустим на основание высоту (которая также является биссектрисой и медианой), она поделит основание на отрезки по 8 см каждые. Высота равна 6 см (опять же, заглянем в прямоугольный треугольник со сторонами 8 (см) и 10 (см) - египетский, поэтому, второй катет равен 6 см). Площадь каждого треугольника = 6 см*8 см/2 = 24 см^2, площадь всего равнобедренного треугольника = 24 см^2*2 = 48 cм^2.
ответ: 48 см^2.
7. Площадь прямоугольника равна произведению его смежных сторон. 4 см*8 см = 32 см^2.
ответ: 32 см^2.
8. Площадь прямоугольного треугольника равна половине произведения его катетов. 5 см*10 см/2 = 25 см^2.
ответ: 25 см^2.
9. Площадь параллелограмма равна произведению высоты на сторону, к которой проведена эта высота. 6 см*8 см = 48 см^2.
ответ: 48 см^2.
10. Площадь трапеции равна произведению его высоты на полусумму оснований. Полусумма оснований - 16 см/2 = 8 см. 48 см^2 = 8 cм*h (высота) ⇒ h = 6 cм.
ответ: 6 см.
Поделитесь своими знаниями, ответьте на вопрос:
1. Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндра, деленную на π. 2. Найти площадь полной поверхности конуса, деленную на π, если радиус основания конуса равен 5, образующая равна 6. 3. Вычислите площадь поверхности шара диаметром 0, 2 м. (ответ запишите в виде десятичной дроби, то есть представьте число π, как 3, 14
1.12
2.55
3.157/1250
Подробнее во вложении: