stertumasova29
?>

Концы диаметра удалены от касательной к окружности на 2, 5 м и 1, 5 м. Найдите длину диаметра

Геометрия

Ответы

svetlana-sharapova-762621

Объяснение:

Перепиши в тетрадь


Концы диаметра удалены от касательной к окружности на 2,5 м и 1,5 м. Найдите длину диаметра
boykoz9
Проведём высоту из большего угла параллелограмма
1)Т.к. меньший угол равен 30° и из большего угла проведена высота то по св - ву прямоугольная треугольника получаем что высота равна 15 см.
S=a×huge
S= 52×15=780см
2) Т.к дерево и человек стоят перпендекулярно дороге и угол падения тени дерево и человека равно то треугольники подобны (большой треугольник от дерева до тени человека, маленький от чельвека до своего тени). Т.к. треугольники подобны то составиможно пропорции
Дерево/человек= тень дерева+ тень человека/тень человека
Дерево=5×1,75=8,75м
Popova-Erikhovich

Объяснение: ЗАДАНИЕ 3.3

Если боковое ребро составляет с основанием угол 45, то треугольник, который образуют высота и основание пирамиды является прямоугольным и равнобедренным, в котором высота пирамиды и проэкция рёбра на основание являются катетами а боковое ребро - гипотенузой, поэтому высота пирамиды тоже будет 10см. Также в прямоугольном равнобедренном треугольнике гипотенуза в √2 раз больше катета, поэтому боковое ребро=10√2см. Если провести апофему, то она делит боковую грань и сторону основания пополам, образуя при этом 2 прямоугольных треугольника, поскольку боковая грань тоже является равнобедренным треугольником, поэтому апофема является биссектрисой и высотой. Так как сторона основания дклится пополам то половина основания будет 10/2=5см. Найдё апофему по теореме Пифагора:

Апоф²=(10√2)²-5²=100×2-25=200-25=175;

Апоф=√175=√3×25=5√3см

Апоф=5√3см.

Теперь найдём площадь боковой грани пирамиды по формуле:

Sбок.гр=½×а×h, где а- сторона основания, а h- апофема, (высота) проведённая к этой стороне.

Sбок.гр=½×10×5√3=5×5√3=25√3см². Так как таких граней в пирамиде 3 то мы можем найти площадь боковой поверхности: Sбок.пов=25√3×3=75√3см²

ОТВЕТ: Sбок.пов=75√3

ЗАДАНИЕ 3.4

Боковое ребро и высота пирамиды вместе с основанием образуют прямоугольный треугольник, в котором проэкция бокового рёбра на основание и высота пирамиды являются катетами а боковое ребро - гипотенузой. Найдём величину проэкция на основание по теореме Пифагора:

Проэк²=бок.р²-выс²=5²-3²=25-9=16;

Проэк=√16=4см

Если провести вторую такую же проэкцию от соседнего ребра, то получится равнобедренный прямоугольный треугольник, в котором 2 проэкции являются катетами а сторона основания - гипотенузой и катеты равны между собой. Гипотенуза в равнобедренном прямоугольном треугольнике больше катета в √2 раз, поэтому сторона основания =4√2см. Так как в правильной четырёхугольной пирамиде в основании лежит квадрата, то его площадь вычисляется по формуле: S=a², где а - его сторона. Найдём площадь основания используя эту формулу: Sосн=(4√2)²=16×2=32см²

Теперь, зная основание пирамиды и её высоту найдём её объем по формуле:

V=⅓×Sосн×h, где h- высота пирамиды:

V=⅓×32×3=32см³.

ОТВЕТ: V=32см³

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Концы диаметра удалены от касательной к окружности на 2, 5 м и 1, 5 м. Найдите длину диаметра
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

PivovarovaIlina1437
dfyurst708
Anna572
sveta1864
Анна498
xeniagolovitinskaya4546
Batishcheva
zakaz
oksana-popova
seleznev1980
kogakinoa
ilukianienko458
agutty3
phiskill559
Yevgenevna