пирамида КАВС, К-вершина, АВС равнобедренный треугольник АС=ВС, уголС=90, АВ=4*корень2, АС=ВС=корень(АВ в квадрате/2)=корень(32/2=4, проводим высоту СН на АВ, и КН на АВ. уголКНС=45, СН=высота=медиана =биссектриса=1/2АВ=4*корень2/2=2*корень2,
треугольник КСН прямоугольный, равнобедренный, уголСКН=90-уголКНС=90-45=45, СН=КС=2*корень2, треугольник КСВ=треугольник КАС как прямоугольные по двум катетам, КА=КВ=корень(ВС в квадрате+КС в квадрате)=корень(16+8)=2*корень6,
треугольник КНС прямоугольный, КН=корень(КС в квадрате+СН в квадрате)=корень(8+8)=4, площадь боковая =2*площадьКСВ +площадьАКВ =2*1/2*ВС*КС+1/2*АВ*КН=2*1/2*4*2*корень2+1/2*4*корень2*4=16*корень2
Поделитесь своими знаниями, ответьте на вопрос:
с заданиями 1.Начертите равнобедренный треугольник АВС с основанием ВС. Постройте: а) фигуру, на которую отобразится отрезок АВ при центральной симметрии относительно точки С; б) Фигуру, на которую отобразится <АСВ при осевой симметрии относительно оси ВС 2.Постройте фигуру, на которую отобразится < АВС = 45° при повороте вокруг точки В на 90° против часовой стрелки 3.Даны точки А(1; -2), В(-3;0), С(1;0 Найдите координаты точки, в которую отображается середина отрезка АВ а) при центральной симметрии с центром в точке С; б) при осевой симметрии относительно оси АС
Высота пирамиды - это высота равнобедренного
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.