Находим угол АОВ с учетом того, что АО и
OB - биссектрисы углов А и В (по свойству
центра вписанной окружности):
AOB = 180-(1/2)А-(1/2)B = 180-((V2)(A+B)) =
180-((1/2)(180-60) =
= 180-90+30 = 120°.
Зная 2 стороны и угол, находим сторону AB
треугольника АОВ:
AB =V(6°+102-2*6*10*cos120)
= V36+100-120*(-1/2) = V196 = 14 см.
Зная стороны треугольника АОВ, находим
углы А и В (А = 2*BAO, B =2*АВО) по теореме
Синусов.
sin BAO = sin120*10/14 =
0.866025*10/14 =
0.6185896º.
Угол BAO = arc sin
0.6185896 = 0.6669463 радиан =
38.213211°
Угол А= 2*0.3802512 радиан = 21.786789°.
Угол B = 2*
21.786789=
43.573579º.
Зная углы треугольника ABC и одну сторону
AB = 14 см, находим 2 другие по теореме
Синусов:
BC = 14*sin A/sin C = 14*
0.972069/
0.866025 =
15.71428571 CM.
AC = 14*sin B /sin C = 14*
0.6892855 / 0.866025 =
11.14285714 см.
Находим площадь треугольника АВС по
формуле Герона:
S= V(p(p-a)(p-b)(p-c) =
75.82141 см2.
Здесь р= (а+в+с)/2 =
20.428571 см.
Радиус описанной окружности R = abc / 4S =
8.0829038 CM.
Поделитесь своими знаниями, ответьте на вопрос:
1, 14. а) ; б) ; б) ; в) * через пару точек Сколько линий можно нарисовать? Одна линия на каждые три не должен лежать вдоль
Рішення.
Вирішимо задачу шляхом додаткового побудови навколо заданої геометричної фігури (трикутники), щоб використовувати властивості нової утвореної фігури (прямокутники) для рішення цієї задачі з геометрії.
Спочатку добудуємо прямокутний трикутник до прямокутника.
В результаті додатковой побудови катети прямокутного трикутника одночасно є сторонами прямокутника, а гіпотенуза - його діагоналлю.
Далі врахуємо наступні властивості трикутника і прямокутника:
Сума кутів трикутника дорівнює 180 градусамДіагоналі прямокутника в точці перетину діляться навпілДіагоналі прямокутника рівні
Величина одного з кутів трикутника задана в умові задачі. Оскільки трикутник за умовами прямокутний, то ми можемо знайти величину третього кута, знаючи, що сума кутів трикутника дорівнює 180 градусам.
Оскільки кут CAB = 20°, то кут ABC = 180 - 90 - 20 = 70°
Таким чином, ми знайшли градусну міру кута B у трикутнику ABC.
Розглянемо трикутник COA. Він рівнобедрений, так як його сторони - це половини діагоналей прямокутника. Це випливає з властивостей прямокутника. Так як діагоналі прямокутника рівні, а в точці перетину вони діляться навпіл, то половини рівних відрізків будуть також однакові. Оскільки в равнобедренном трикутнику кути при основі рівні, то:
∠OCA = ∠OAC = 20º
Розглянемо трикутник BKC. CK є висотою трикутника ABC, проведеної до гіпотенузи. Значить кут BKC - прямий, тобто дорівнює 90 градусам, а сам трикутник BKC - прямокутний. Оскільки трикутник BKC - прямокутний, то кут BCK = 180 - 90 - 70 = 20° . (Це випливає з того, що сума кутів трикутника 180 градусів, кут BKC - прямий, а величину кута B ми знайшли раніше)
Оскільки кут BCA - прямий, то його градусна міра дорівнює 90 градусів і, одночасно, дорівнює сумі градусних мір складових його кутів: BCK, KCO та OCA.
Величину кута BCK ми тільки що знайшли, вона становить 20 градусів, величину кута OCA ми також знайшли раніше і вона теж становить 20 градусів.
Звідки:
20° + 20° + ∠KCO = 90°
∠KCO = 50°
Відповідь: Кут між медіаною і бісектрисою заданого прямокутного трикутника дорівнює 50 градусів.
Объяснение: