Решение: S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD). , где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD. . Аналогично, , где НN - высота, проведенная к стороне СD.
Получаем:
Площадь полной поверхности равна сумме площади боковой поверхности и площади основания:
Решение: S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD). , где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD. . Аналогично, , где НN - высота, проведенная к стороне СD.
Получаем:
Площадь полной поверхности равна сумме площади боковой поверхности и площади основания:
ответ: 384см²; 564см²
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Прямые AB и CD пересекаются в точке O. сумма углов BOC и AOD равна 194°. найдите угол AOC
НABCD - пирамида
ABCD - прямоугольник
AB=CD=10см
AD=ВС=18см
НO - высота
НO=12cм
S(бок)-?
S(полн)-?
Решение:
S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD).
, где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD.
.
Аналогично, , где НN - высота, проведенная к стороне СD.
Получаем:
Площадь полной поверхности равна сумме площади боковой поверхности и площади основания:
ответ: 384см²; 564см²