Обозначим высоту пирамиды Н, высоту боковой грани h, сторону основания а (в основании квадрат).
площадь основания = площадь полной поверхности - пощадь боковой поверхности = 96 см^2 - 80 см^2 =16 см^2
Т.к. в основании квадрат, площадь основания = а^2 =16 см^2
а=4
Площадь поверхности одной боковой грани = а*h/2 =80/4 =20 cм^2
Высота боковой грани h = 20*2/4=10 см
Рассмотрим треугольник, образованный высотой пирмиды, высотой боковой грани и отрезком (обозначим его длину с), соединяющим точки их пересечения с основанием, равным полвине стороны основания. Это прямоугольный треугольник, т.е. h^2 = c^2 + H^2
c=a/2 = 2 см
H = корень квадратный (h^2 - c^2) = корень квадратный (96)=4 корня квадратных из 6
Поделитесь своими знаниями, ответьте на вопрос:
16. Начертите произвольную прямую. Постройте треугольник, равныйтреугольнику ABC, изображенному на рисунке 7, так чтобы одна его стороналежала на этой прямой.
1) Сторона треугольника, лежащая против прямого угла называется гипотенузой
2) Сторона треугольника, прилежащая к прямому углу называется катетом
3) Признаков равенства прямоугольных треугольников - 3
4) Катет прямоугольного треугольника, лежащий против угла в 30° равен половине гипотенузе
5) 3. Признак равенства прямоугольных треугольников по двум катетам
6) 2. Признак равенства прямоугольных треугольников по гипотенузе и катету
7) 4. Признак равенства прямоугольных треугольников по катету и острому углу
8) 1. Признак равенства прямоугольных треугольников по гипотенузе и острому углу