Прямоугольный треугольник, следовательно, один из углов будет равен 90 градусам. Острые углы равны = 180 - 90 ( прямоугольный угол )
Теперь решаем через уравнение :
Пускай один из углов будет равен x , а второй x+6
Тогда получим уравнение: x + (x+6)= 90
Раскрываем скобки: x+x+6=90
2x= 90-6
2x=84
x=42 ( один из острых углов)
Теперь подставим в выражение x+6 ( второй острый угол) и получим
42+6 = 48
ответ: Остр.угол 1 = 42 Остр.угол 2= 48
а) Рассмотрим ΔMBO и ΔAPO
1) ∠AOP=∠MOB - как вертикальные углы
2) ∠OMB=∠APO - как накрест лежащие углы при параллельных прямых NP и MQ и секущей MP. (NP//MQ - по определению параллелограмма)
3) MO=OP - по свойству параллелограмма (точкой пересечения делит диагонали пополам)
Значит ΔMBO и ΔAPO равны по двум углам и стороной между ними. Следовательно AO=OB - как соответственно равные элементы в равных треугольниках.
б) 1) Из пункта а) ΔMBO = ΔAPO, значит MB=AP=2 см - как соответственно равные элементы в равных треугольниках.
2) NP=NA+AP=3+2=5см
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
2. Отрезки АВ и CD пересекаются в точке О, которая является серединой каждого из них
ΔАСО = ΔВDO по двум сторонам и углу между ними
(угол СОА = углу ВОD как вертикальные, АО=ОВ ,так как
О-середина отрезка АВ, СО=DО, так как О -середина отрезка СD)снение:
а и б сделал вот на Рассмотрим треугольники аос и бод
Т.к. точка о является серединой отрезка,*следовательно* ао=ос со=од(или наоборот)
Противоположные углы равны(при пересечении образуются два угла-аос и сод ) они равны поскольку вертикальные.
Следовательно треугольники равны по 1 признаку
Что и требовалось доказать