Основи трапеції дорівнюють ВС=20см, АD=30см, а діагоналі АС і ВD відповідно дорівнюють 24см і 42см і перетинаються в точці О. Обчисліть периметр трикутника ВОС. а) 42см; б)41см; в)64см; г)46, 4см.
Решение: Обозначим противоположные параллельные стороны параллелограмма: нижнее и верхнее за (а) каждую, а боковые стороны за(с) каждую. Тогда периметр Р=2а+2с или 30=2а+2с (запомним это уравнение) Площадь S=a*h или 36=a*h Синус острого угла равен отношения катета (а он является высотой параллелограмма h) к гипотенузе (к боковой стороне с) sinα=2/3 или 2/3=h/c Из площади параллелограмма и sinα можно найти (h)^ 36=a*h h=36/a 2/3=h/c h=2*c/3 Приравняем величины (h): 36/а=2с/3 (запоминаем и это уравнение: Решим систему уравнений: 30=2а+2с 36/а=2с/3
30=2а+2с (разделим каждый член уравнения на (2) 36*3=2с*а
15=а+с 108=2ас Из первого уравнения системы найдём значение (а) а=15-с Подставим значение (а) во второе уравнение: 108=2*(15-с)*с 108=30с-2с² 2с²-30с+108=0 с1,2=(30+-D)/2*2 D=√(900-4*2*108)=√(900-864)=√36=6 c1,2=(30+-6)/4 с1=(30+6)/4=36/4=9 с2=(30-6)/4=24/4=6 В данном случае оба значения положительные, поэтому могут быть боковыми сторонами параллелограмма Примем боковую сторону параллелограмма с=9(см) Подставим с=9 в а=15-с а=15-9=6 (см) -верхние и нижние стороны параллелограмма Если мы примем боковую строну с, равную 6см, то а=15-6=9см То есть в данном параллелограмме боковые стороны могут по 6см, а нижнее и верхнее основания по 9см. Оба ответа являются правильными.
ответ: Стороны параллелограмма: боковые 9см; вернее и нижнее основания 6см
Косарев
23.05.2020
Задача 1 Сначала проверяем, подобны ли данные треугольники, если они подобны, то соотношение соответственных сторон должно быть правильным, значит: АС/А₁С₁=ВС/В₁С₁ 4/6=12/18 4*18=6*12 72=72 значит треугольники подобны Тогда составляем пропорцию с неизвестной стороной А₁В₁: АВ/АС=А₁В₁/А₁С₁ 10/4=А₁В₁/12 А₁В₁=10*12/4=30
Задача 2 Мы знаем что, площади подобных треугольников относятся как квадраты сходственных сторон., Значит: 18/288=9²/А₁В₁ А₁В₁=288*81/18==36
Задача 3 Рассмотрим треугольники АОВ и ДОС, они подобны по первому признаку (когда два угла одного треугольника соответственно равны двум углам другого треугольника), так как ∠АОВ=∠ДОС как вертикальные, а ∠АВД=∠ВДС как внутренние накрест лежащие (так как АВ параллельно ДС, ведь АВСД трапеция и АВ и СД ее основания) Тогда составляем пропорцию отношения сторон подобных треугольников: ДО/ДС=ОВ/АВ 20/50=8/АВ АВ=50*8/20=20 ответ АВ=20
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Основи трапеції дорівнюють ВС=20см, АD=30см, а діагоналі АС і ВD відповідно дорівнюють 24см і 42см і перетинаються в точці О. Обчисліть периметр трикутника ВОС. а) 42см; б)41см; в)64см; г)46, 4см.
Обозначим противоположные параллельные стороны параллелограмма: нижнее и верхнее за (а) каждую, а боковые стороны за(с) каждую.
Тогда периметр Р=2а+2с или 30=2а+2с (запомним это уравнение)
Площадь S=a*h или 36=a*h
Синус острого угла равен отношения катета (а он является высотой параллелограмма h) к гипотенузе (к боковой стороне с)
sinα=2/3 или 2/3=h/c
Из площади параллелограмма и sinα можно найти (h)^
36=a*h h=36/a
2/3=h/c h=2*c/3
Приравняем величины (h):
36/а=2с/3 (запоминаем и это уравнение:
Решим систему уравнений:
30=2а+2с
36/а=2с/3
30=2а+2с (разделим каждый член уравнения на (2)
36*3=2с*а
15=а+с
108=2ас
Из первого уравнения системы найдём значение (а)
а=15-с
Подставим значение (а) во второе уравнение:
108=2*(15-с)*с
108=30с-2с²
2с²-30с+108=0
с1,2=(30+-D)/2*2
D=√(900-4*2*108)=√(900-864)=√36=6
c1,2=(30+-6)/4
с1=(30+6)/4=36/4=9
с2=(30-6)/4=24/4=6
В данном случае оба значения положительные, поэтому могут быть боковыми сторонами параллелограмма
Примем боковую сторону параллелограмма с=9(см)
Подставим с=9 в а=15-с
а=15-9=6 (см) -верхние и нижние стороны параллелограмма
Если мы примем боковую строну с, равную 6см, то а=15-6=9см
То есть в данном параллелограмме боковые стороны могут по 6см, а нижнее и верхнее основания по 9см. Оба ответа являются правильными.
ответ: Стороны параллелограмма: боковые 9см; вернее и нижнее основания 6см