Будем пользоваться теоремой о биссектрисе.
Она заключается в следующем: отношение сторон треугольника, содержащихся в угле, из которого проведена биссектриса, равна отношению отрезков, на которые делит биссектриса противолежащую сторону.
Назовем точку пересечения MN и биссектрисы AK через R; Тогда из данного в условии легко вывести, что биссектриса угла C проходит через R. Пусть RC ∩ AB = F; Пусть AM=2x, MB=x. Тогда x=2; По теореме Менелая для треугольника AMN: , ну а отсюда легко получить AF=2,4 и FM=1,6; Значит BF=3,6 и AF=2,4; По вышеизложенной теореме о биссектрисе имеем:
Поделитесь своими знаниями, ответьте на вопрос:
Задачка по Геометрии:Дан Окружность с точкой О являющейся центром окружности, Угол АОВ=98 град. Нужно найти углы фигуры АDB(см.рисунок)
S=117 см²
Объяснение:
так в задании: "Края основания прямоугольного параллелепипеда составляют 12 см и 5 см. Длина боковой стороны ребра 9 см. Рассчитайте площадь сечения диагонали!"
предположу, что условие должно быть таким:
стороны основания прямоугольного параллелепипеда 12 см и 5 см. длина бокового ребра 9 см. найти площадь диагонального сечения прямоугольного параллелепипеда
диагональное сечение прямоугольного параллелепипеда - прямоугольник со сторонами d - диагональ основания прямоугольного параллелепипеда и h - высота прямоугольного параллелепипеда - длина бокового ребра
рассмотрим прямоугольный треугольник:
катет а=12 см - сторона основания параллелепипеда
катет b =5 см - сторона основания параллелепипеда
гипотенуза d - диагональ основания параллелепипеда, найти по теореме Пифагора:
d²=a²+b², d²=12²+5², d=13 см
найдем площадь сечения: S=d*h
S=13*9, S=117 см²