Поделитесь своими знаниями, ответьте на вопрос:
В четырёхугольнике abcd известны стороны которые попарно равны 4 и 12, а угол A равен 60 градусов, из вершины угла A проведена бессиктрисса AM найдите расстояние от точки b до биссектрисы AM. СРОСНО НУЖНО
т.к Сечением у нас является прямоугольный треугольник ABC . где BC-гипотенуза . а AC-катет (радиус) Из этого по теореме Пифагора найдем AC . т.к треуг прямоугольный то AC=AB(представим как х) ПОлучится уравнение . Х(в квадрате )+Х(в квадрате)=144. из этого получаем 2Х(в квадрате)=144 . Х=корень из 72 т.е 3 корней из 8 . AC=3 корней из 8(радиус)
1 найдем площ основания = Sосн=пr^2= п*(3 корней из 8)^2(в квадрате)=72п. Sосн=72п
2 найдем площ бок поверх Sбок=пrl(где l это гипотенуза BC) = п*3 корней из 8*12=36п корней из 8
3 Sпол = Sбок+Sосн=36п корней из 8 + 72п
Всё