Demina-Khokhlov584
?>

В треугольнике MNP угол N-прямой , PK-биссектриса, PK-8см , NK-4 с.Найдите внешний угол при вершине M.

Геометрия

Ответы

Elizavetaborisovna1992
Рискну, все-таки, представить решение.
Возьмем произвольную точку С на окружности (O;R).
Треугольник АВС - прямоугольный, так как опирается на диаметр.
Точка J -  центр вписанной в этот треугольник окружности - лежит на пересечении биссектрис углов треугольника АВС.
Проведем прямую СJ до пересечения с описанной  окружностью (O;R).
Точка пересечения D - конец диаметра, так как вписанный
<DCB=45° и центральный угол DОВ=90° (при любом положении точки С, исключая точки А и В, так как в этом случае треугольник АВС вырождается).
Заметим, что <AJD=(<A+<C)/2, как внешний угол треугольника ACJ.
Проведем прямую АJ до пересечения с описанной  окружностью (O;R).
<BAC1=(1/2)*<A, <DAB=(1/2)*<C (вписанный, опирающийся на одну дугу, что и <DCB). Значит <DAC1=<DAJ=(<A+<C)/2, треугольник DAJ равнобедренный и АD=DJ.  И это, как уже отмечалось, при ПРОИЗВОЛЬНОМ положении точки С на окружности, исключая точки А и В.
Следовательно, точка J описывает дугу окружности радиуса R√2 c центрами в точках D и E ( в зависимости от расположения точки С относительно диаметра АВ).

Вокружности проведён диаметр ab, c - произвольная точка окружности, j - центр вписанной в abc окружн
родичева1812
Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.

Сечение правильной треугольной призмы проходящее через сторону основания и противо лежащую вершину д
Сечение правильной треугольной призмы проходящее через сторону основания и противо лежащую вершину д

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В треугольнике MNP угол N-прямой , PK-биссектриса, PK-8см , NK-4 с.Найдите внешний угол при вершине M.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

maryshecka
Анна Марина1873
smint056950
okabankova7
Васильев1028
LesnovaVeronika1830
suxoruchenkovm171
mg4954531175
chavagorin
lsuvorova1987
ИвановнаВладимир1832
smnra219
ss2911
Газинурович
Геометрия 7 класс 5 задание
namik120939