10√3 см
Объяснение:
Длинная наклонная - с углом 30° с плоскостью
Высота равна половине длинной наклонной
h = l₁/2 = 15/2 см
Теорема Пифагора для второй наклонной l₂ как гипотенузы, высоты h как катета и проекции p₂ как катета против угла в 30°
l₂² = h² + p₂²
l₂² = h² + (l₂/2)²
l₂² = h² + l₂²/4
3/4*l₂² = h²
l₂ = 2h/√3
l₂ = 2*15/2/√3 = 5√3 см
Угол между наклонными 90°
Расстояние d между основаниями наклонных - гипотенуза, наклонные - катеты
l₁² + l₂² = d²
d² = 15² + (5√3)²
d² = 225 + 25*3 = 300
d = √300 = 10√3 см
Пусть дан △АВС равнобедренный , ВС - основание, т.О ∈ ВС, F ∈ AB,
E ∈ AC ; ОЕ || АВ и ОF || АС ; ОFАЕ = 32см. Найдём АВ - ?
Решение
∠1 = ∠2 потому что △ АВС равнобедренный ( по условию ).
ОF || АС по условию, поэтому ∠2 =∠3 ( соответственные углы образованные при пересечении этих прямых секущей ВО ), значит
∠1 =∠3.
Рассмотрим △ВFO : равнобедренный, BF = FO.
ОЕ || АВ и ОF || АС по условию,значит OFAE - параллелограмм.
По свойству сторон и углов параллелограмма AF = OE и FO = AE.
Найдём периметр РОFАЕ :
Р(ОFАЕ) = 2 * AF + 2 * FO
Р(ОFАЕ) = 2( AF+FO)
BF = FO , то Р(ОFАЕ) = 2( AF + BF)
Р(ОFАЕ) = 2 * АВ
АВ = Р(ОFАЕ) /2 = 32/2 = 16
Поделитесь своими знаниями, ответьте на вопрос:
и 4 надо расписать, а на остальные так ответить
вот так вот
Объяснение:
не моя рлжа
рпоомситммнп кччкчсеаес