По определению площадь параллелограмма: S=ah, где а - большая сторона, а h - высота.
Найдём h. Если у нас параллелограмм ABCD ( буквы расставлены с нижней левой выршины и далее по часовой стрелке ), то проведём из вершины B перпендикуляр на AD, получим отрезок BH - это и есть высота (h). Далее из прямоугольного треугольника ABH найдём BH. Т.к. угол между сторонами равен 150 градусов ( Это угол ABC ), то угол BAD будет равен 30 градусам. Синус этого угла будет равен: sin30=BH/AB ( т.к. синус угла в прямоугольном треугольнике равен отношению противолежащего катета к гипотенузе ) , откуда BH=ABsin30. Теперь мы знаем высоту и сторону => можем найти площадь. Подставим полученные значения в формулу для площади и получим: S=BC*AB*sin30=7*4*1/2=14 (см^2).
Поделитесь своими знаниями, ответьте на вопрос:
У многоугольника 8 сторон и R= 14 см (если корня в ответе нет, под знаком корня пиши 1 S= −−−−−√ см2; у многоугольника 9 сторон и R= 14 см (ответ округли до целых).
1)
Нарисуем треугольник - осевое сечение конуса. Обозначим его АСВ.
АСВ - равнобедренный прямоугольный треугольник. СВ=d - диагонали квадрата со стороной НВ.
d=а√2
СВ=а√2=4√2, => НВ=4
Площадь полной поверхности конуса равна сумме площади основания и боковой площади.
Sоснов=π r²=π*4²=16π
Sбок= произведению половины длины окружности (2π r):2 на образующую.
Sбок =π r l= π 4*4√2=16√2π
S полная =16π+16√2π=16π(1+√2)
-----------------------------------------------
2)
На рисунке - основание цилиндра.
Треугольник НOD прямоугольный с углом при вершине D=30°, т.к противолежащий катет ОН=половине радиуса r.
НD=ОD*cos(30°)=r(√3):2
CD=cторона сечения=2НD=2r(√3):2=r√3
Площадь сечения - площадь квадрата со стороной CD = 108 см²
CD=√108=6√3
r√3=6√3
r=6
Площадь полной поверхности цилиндра равна сумме площади основания и площади боковой поверхности.
Найдите площадь основания по формуле
S осн=π r²=36π см²
Площадь боковой поверхности цилиндра равна произведению длины окружности на его высоту ( высота равна стороне сечения)
S бок=h* 2 π r=12 π √3
S полн=36π+12 π √3=12π(3+√3)см²