N-odes-art-school410
?>

Найдите площадь квадрата ABCD, если диагональ AC = 4 см

Геометрия

Ответы

kate1610

S=d^2/2

S=4^2/2=16/2=8 см^2

Объяснение:

dimari81

это ответ верный!10000%


Найдите площадь квадрата ABCD, если диагональ AC = 4 см
Бернард pokerman
Рассмотрим ΔABC

AB = BC = 6 м ==> ΔABC равнобедренный.

Построим BH перпендикулярно AC

В прямоугольном треугольнике высота, проведённая к основанию, является его биссектрисой (делит угол на 2 равных угла)

==> ∠ABH = ∠ABC/2 = 120/2 = 60°

Рассмотрим ΔABH: AB = 6 м, ∠ABH = 60°, ∠H - прямой.

∠A = 90 - 60 = 30° (сумма острых углов прямоугольного треугольника равна 90°)

BH = AB/2 = 6/2 = 3 м (в прямоугольном треугольнике катет, лежащий напротив угла в 30°, равен половине гипотенузы)

Пусть высота дома равна h

h = BH + CD = 3 + 5 = 8 м

ответ: h = 8 м.
Найдите высоту дома, размеры которого показаны на рисунке, если угол между скатами его крыши равен 1
Мельникова

Дано: АВСД - трапеция, АВ=СД, АД=16√3, ∠А=∠Д=60°, АС⊥СД. Найти S(АВСД).

Решение: Проведем высоту СН, тогда S(АВСД)=(ВС+АД):2*СН.

Рассмотрим ΔАСД - прямоугольный, ∠Д=60°, тогда ∠САД=90-60=30°, а СД=1\2 АД=16√3:2=8√3.

Диагональ АС перпендикулярна к боковой стороне и делит угол А пополам, значит большее основание трапеции в два раза больше меньшего основания и её боковых сторон;  и высота трапеции равна половине её диагонали.

СД=ВС=16√3:2=8√3;

АС²=(16√3)²-(8√3)²=768-192=576;  АС=√576=24.

СН=1\2 АС=24:2=12.

S(АВСД)=(8√3+16√3):2*12=144√3 (ед²).

ответ: 144√3 ед²


Вравнобедренной трапеции диагональ перпендикулярна боковой стороне найдите площадь трапеции если бол

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите площадь квадрата ABCD, если диагональ AC = 4 см
Ваше имя (никнейм)*
Email*
Комментарий*