mail2017
?>

В окружности проведены хорды AB и CD, которые пересекаются в точке M. Найдите отрезок BM, если CM = 9, DM = 12, AM = 5.

Геометрия

Ответы

Владимирович111
△BAC - равнобедренный, ∠ABC=∠ACB =(180°-80°)/2=50°

В равнобедренном треугольнике биссектриса угла против основания является медианой и высотой, то есть серединным перпендикуляром к основанию.
AN - биссектриса ∠BAC
△BNС - равнобедренный (N лежит на серединном перпендикуляре к BC)
BN=CN, ∠NBC=∠NCB=30°
∠NCM= ∠NCB-∠MCB =30°-10° =20°
∠NBA= ∠ABC-∠MBC =50°-30° =20°

∠BNC= 180° -2∠NBC =180°-30°*2 =120°
∠ANB= 180° -∠BAC/2 -∠NBA =180°-40°-20° =120°

△ANB=△MNC, MC=AB=AC, △ACM - равнобедренный

∠ACN=50°-20°-10°=20°, CN - биссектриса ∠ACM
△ANM - равнобедренный (N лежит на серединном перпендикуляре к AM)
∠AMN= (180°-120°)/2 =30°
∠NMC= 180°-120°-20° =40°
∠AMC= ∠AMN+∠NMC =30°+40° =70°
Внутри плоского равнобедренного треугольника abc с основанием bc взято такую точку m, что ∠mbc=30°,
kitoova
R = 20 см - радиус описанной окружности
a = 16√5 см - боковая сторона
b - основание
h - высота
по теореме синусов
2R = a/sin(∠A)
Если ∠A - это угол при основании, то
2*20 = 16√5/sin(∠A)
sin(∠A) = 16√5/40 = 2√5/5 = 2/√5
cos(∠A) = √(1-sin²(∠A)) = √(1-(2/√5)²) = √(1-4/5) = √(1/5) = 1/√5
Высота треугольника
h = a*sin(∠A) = 16√5*2/√5 = 32 см
Половинка основания
b/2 = a*cos(∠A)
b = 2a*cos(∠A) = 2*16√5*1/√5 = 32 см
Площадь треугольника
S = 1/2*b*h = 32²/2 = 512 см²

tg(∠A) = sin(∠A)/cos(∠A) = 2/√5/(1/√5) = 2
tg(∠A) = h/(b/2) 

Около равнобедренного треугольника , боковая сторона которого равна 16 корень из 5, описана окружнос

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В окружности проведены хорды AB и CD, которые пересекаются в точке M. Найдите отрезок BM, если CM = 9, DM = 12, AM = 5.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

rechkai64
motor2218
Александра_Наталья1417
NataliaBerezovskaya33
drontox1031
ibarskova1542
ГегамБукреев830
AlekseiMardanova
Avolohova
zinasekina4
Егорова
almazsit85
kmalahov
Ромеовна1527
platonm777639