artemiusst
?>

сделать 1 и 5 задания. очень нужно ь.к. сейчас соч .​

Геометрия

Ответы

Viktorovich395
Проведем окружность радиусом R=a с центром в точке М.
Пересечение этой окружности с прямой I и даст нам точки на прямой I, находящиеся на расстоянии "а" от точки М.
Проведем перпендикуляр МН из точки М к прямой I. Длина этого перпендикуляра - расстояние от точки М до прямой I.
Если значение "а" больше расстояния от М до I, то имеем две точки на прямой I, находящиеся на расстоянии "а" от точки М.
Если значение "а" равно расстоянию от М до I, то имеем одну точку на прямой I, находящуюся на расстоянии "а" от точки М.
Если значение "а" меньше расстояния от М до I, то точки на прямой I, находящейся на расстоянии "а" от точки М не существует.
david-arustamyan1
По условию MABCD -  правильная четырехугольная пирамида, около которой описан конус 

MO ⊥ (ABC)

∠ MKO=45^\circ

OF= 2  см

ΔAMC  - осевое сечение конуса, где AM  и MC - образующие конуса

Так как MABCD  - правильная четырехугольная пирамида,

значит в  основании лежит квадрат ABCD

AC ∩ BD=O

MO ⊥ (ABC)

Проведём MK  ⊥ BC,  тогда OK  ⊥ BC  и \ \textless \ MKO=45 ^\circ как линейный угол двугранного угла 

O  - центр окружности, описанной около квадрата  

Значит расстояние от центра основания пирамиды до образующей конуса есть длина перпендикуляра  OF, т. е.  OF ⊥ AM

Пусть OK=KB=x,  тогда AB=2x

d=a \sqrt{2},  где d - диагональ квадрата, a - сторона квадрата

AC=BD=2 \sqrt{2} x, ( как диагонали квадрата)

AO=OC=OB=OD=x \sqrt{2}

Δ MOK -  прямоугольный, равнобедренный,  следовательно MO=x

Рассмотрим Δ MOA - прямоугольный
 
по теореме Пифагора найдем MA= \sqrt{MO^2+AO^2}= \sqrt{x^2+(x \sqrt{2})^2}= \sqrt{ x^{2} +2x^2} = \sqrt{3x^2} =x \sqrt{3}

С одной стороны:  S_{MOA} = \frac{1}{2} *MO*AO= \frac{1}{2}*x*x \sqrt{2} = \frac{x^2 \sqrt{2} }{2},

 а с другой стороны:  S_{MOA}= \frac{1}{2} *MA*OF= \frac{1}{2}*x \sqrt{3}*2=x \sqrt{3}
Приравняем:

\frac{x^2 \sqrt{2} }{2} =x \sqrt{3}

x \sqrt{2} =2 \sqrt{3}

x= \frac{2 \sqrt{3} }{ \sqrt{2} }

x= \sqrt{6}

OM= \sqrt{6}  см

Тогда S_{AMC}= \frac{1}{2}*MO*AC

AC=2AO=2 \sqrt{2}x=2 \sqrt{12} =4 \sqrt{3}  см

S_{AMC}= \frac{1}{2}* \sqrt{6} *4 \sqrt{3} =2 \sqrt{18}=6 \sqrt{2}  (см ²)

ответ:  6 \sqrt{2}  см²

Хелп, конус описан около правильной четырехугольной пирамиды. градусная мера угла наклона боковой гр

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

сделать 1 и 5 задания. очень нужно ь.к. сейчас соч .​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

kristina1989
Маркина Ворошилина
gordeevadesign2986
supercom-ru-marinaguseva4267
Dmitrii sergei463
Роман1406
selena77
langprint
muzeynizhn
Sukharev-Achkasov
Alyona744
verav75
s-laplandia6
timpavilion23
ирина_Андреевич1634