проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
в треугольнике на рисунке приложения
катет вс=30 см, а вн=18 - его проекция на гипотенузу.
bc²=ав•нв
900=ав•18
ав=900: 18=50 см
высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. из подобия следует отношение:
ан: ас=ас: ав
ан=50-18=32
32: ас=ас: 50 ⇒ ас²=32•50
ас=√1600=40 см
если обратить внимание на отношение катета и гипотенузы 3: 5 в ∆ всн, увидим, что этот треугольник - египетский. отсюда следует ав=50 см, (т.к. меньший катет=30). а ас=40 см. получим длины сторон треугольника, отношение которых 3: 4: 5.
подробнее - на -
Поделитесь своими знаниями, ответьте на вопрос:
ответить на во Изи 35 balov
. вспомним общий вид уравнения сферы.
уравнение сферы с заданным центром и радиусом имеет вид:
(x - x0)^2 + (y - y0)^2 + (z - z0)^2 = r^2,
где x0, y0, z0 - координаты центра сферы, а r - ее радиус.
2. составим уравнение сферы с центром в точке с (2; 0; -3) и радиусом r = 4 см.
подставим координаты центра и значение радиуса в общее уравнение сферы:
(x - 2)^2 + (y - 0)^2 + (z - (-3))^2 = 4^2.
проведем необходимые преобразования (раскроем лишние скобки и возведем в квадрат значение радиуса) и получим уравнение сферы:
(x- 2)^2 + (y )^2 + (z + 3)^2 = 16.