Чертежи смотрите во вложении.
✧Задание №1.✧
В прямоугольном равнобедренном треугольнике гипотенуза равна 12 см. Найти катеты этого треугольника.
Дано :
ΔАВС - равнобедренный и прямоугольный (∠В = 90°, АВ = СВ).
АС = 12 см.
Найти :
АВ = ?
СВ = ?
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы (теорема Пифагора).Пусть АВ = СВ = х. Тогда АВ² + СВ² = АС²
х² + х² = 12²
2х² = 144
х² = 72
х₁ = - не удовлетворяет условию задачи, так как длины отрезков не могут выражаться отрицательными числами.
х₂ = - подходит.
Тогда АВ = СВ = х = см.
см, см.
✧Задание №2.✧
Найти меньшую диагональ ромба, если его сторона равна 13 см, а большая диагональ ромба равна 24 см.
Дано :
Четырёхугольник ABCD - ромб.
ВС = 13 см, АС = 24 см.
Найти :
BD = ?
В ромбе диагонали точкой пересечения делятся пополам и взаимно перпендикулярны.Следовательно, АС⊥BD, ВО = , CO = = *24 см = 12 см.
Рассмотрим ΔВОС - прямоугольный (∠ВОС = 90°).
По теореме Пифагора -
ВО² + СО² = ВС²
ВО² = ВС² - СО² = 13² - 12² = 169 - 144 = 25 ⇒ ВО = см.
Тогда BD = 2*BO = 2*5 см = 10 см.
10 см.
Поделитесь своими знаниями, ответьте на вопрос:
1. В треугольнике АВС ∟А = 70°, ∟С = 55°. Докажите, что треугольник АВС – равнобедренный , и укажите его основание.
1. Дано: ΔАВС, АВ>BC>AC.один из углов треугольника равен 120 градусов,а другой 40 градусов
Найти: углы A,B,C
Решение: Сумма углоа треугольника = 180 градусов. значит третий угол = 180 - (120+40) = 20 градусов.
Значит углы в треугольнике равны 120, 40, 20.
В треугольнике напротив бОльшей стороны лежит бОльшй угол. Напротив АВ лежит угол С, значит ∠С=120.
Напротив ВС лежит угол А, значит ∠А=40
Напротив АС - угол В, значит ∠В = 20
ответ: ∠В=20, ∠А=40, ∠С=120
2задача.
Дано: ΔАВС, ∠А=50°, ∠С=12*∠В
Найти: ∠В, ∠С
Решение:
Сумма углов треугольника = 180°. Значит ∠В+∠С=180-∠А = 180°-50°=130°
Пусть ∠В-х, тогда ∠С=12х, тогда ∠В+∠С=12х+х=12х, что равно 130°
13х=130
х=10° - ∠В
12*10°=120°-∠С
ответ: 10° и 120°