Ляпунов_Владмирович
?>

CA= 15 см, CB= 36 см, AB= 39 см. а) sinA= (дріб не скорочуй) б) S(ABC) =

Геометрия

Ответы

bochkarevazh

а)2,4

б)найди высоту и рассчитай по формуле

Казаков
Радиус окружности описанной вокруг правильного шестиугольника равен его стороне.
Площадь сектора соответствующая его центральному углу равна 60/360=1/6 части площади круга.
S=πr²;
Sсек.=π*12²/6=24π см².
Площадь большей части круга (см. рисунок) - площадь круга за вычетом площади сегмента ограниченного стороной шестиугольника и стягивающей его дугой.
Площадь этого сегмента равна площади сектора с углом 60° за вычетом площади равностороннего треугольника со стороной 12 см.
Sтр.=а²sin60°/2=144√3/4=36√3 см².
Sм.с.=Sсек.- Sтр.=24π-36√3 см².
Площадь большей части круга - 144π-(24π-36√3)=120π+36√3 см².
В полных единицах ≈ 439,2 см².
                    
docvet4
Пусть о – центр окружности, аbсdef – данный шестиугольник сторона шестиугольника ab=а=6см. для шестиугольника радиус описанной окружности равен стороне шестиугольника r=a r=6 см центральный угол правильного шестиугольника равен 360\6=60 градусов площадь кругового сектора вычисляется по формуле sкс=pi*r^2*альфа\360 градусов где r – радиус круга, а альфа - градусная мера соответствующего угла. sкс=pi*6^2*60 градусов\360 градусов= 6*pi см^2 площадь треугольника аоb равна аb^2*корень (3)\4= =6^2 *корень (3)\4=9*корень (3) см^2 . площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой= площадь кругового сектора- площадь треугольника аос площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой (площадь меньшей части круга, на которые его делит сторона шестиугольника) = =6*pi- 9*корень (3) см^2 . ответ: 6*pi см^2, 6*pi- 9*корень (3) см^2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

CA= 15 см, CB= 36 см, AB= 39 см. а) sinA= (дріб не скорочуй) б) S(ABC) =
Ваше имя (никнейм)*
Email*
Комментарий*