DVOct33
?>

Докажите что четырехугольник abcd с вершинами в точках a(1;2) b(3;5) c(5;2) D (3;-1)является ромбом​

Геометрия

Ответы

tarkhanovilya

abcd-ромб

a(1,2)

b(3,5)

c(5,2)

d(3,-1)


Докажите что четырехугольник abcd с вершинами в точках a(1;2) b(3;5) c(5;2) D (3;-1)является ромбом​
maisa1991
∆АВС - равнобедренный, АВ = ВС. О - центр вписанной окружности, АС = 10 см. Г∆АDК + Р∆NМС + Р∆ЕВF = 42 см. Найти: АВ. Решения: По свойству касательных, проведенных к окружности из одной точки, имеем: КР = КХ, XN = NL, LM = MY, YF = FR, RE = EZ, ZD = DP. KN = KX + XN, NM = NL + LM, MF = MY + YE, FE = FR + RE, DE = D + ZD, DK = DP + PK. Отсюда имеем: KN + FM + ED = NM + FE + ZК. АВ + ВС + AC = (AD + DE + EB) + (BF + FM + MC) + (AK + KN + NC) = = (BE + BF) + (CM + CN) + (AK + AD) + (DE + FM + КN) = = (BE + BF) + (CM + CN) + (AK + AD) + (ZK + FE + NM) = = (BE + BF + EF) + (CM + CN + MN) + (AK + AD + DK) = = Г∆АDК + Р∆NМС + Р∆ЕВF = 42 см. AC = 10 см, 2АВ + 10 = 42; 2AB = 42 - 10 = 32; AC = 16 см. ответ: 16 см.
Tkachenko1050

Объяснение:

Треугольник FAC и его ортоцентр - это центр вписанной окружности треугольника ABC

Объяснение: Автор задания не совсем удачно обозначил  центры вписанной и описанной окружностей. Обычно центр вписанной окружности  - это точка I, центр описанной - точка O.

С разрешения автора буду считать, что центр вписанной окружности - это I. Кстати, картинка не совсем удачная. Дело в том, что, как известно, на одной прямой (прямой Эйлера) находятся центр O описанной окружности, центроид (то есть точка G пересечения медиан)  и ортоцентр H. Центр же вписанной окружности лежит на этой прямой только если треугольник равнобедренный. Перехожу к решению.

Каждый из углов тр-ка ABC будем обозначать одной буквой - A, B, C. Значок градуса будем опускать. Из равнобедренного тр-ка EAC имеем: угол ECA=90-(A/2); из равноб. тр-ка ACD имеем: CAD=90-(C/2). Поэтому AFC=(A+C)/2. I лежит на биссектрисе угла BAC, то есть IAC=A/2, откуда DAI=DAC-IAC=90-(A+C)/2. То есть AFC+FAI=90, откуда AI перпендикулярно FC. Аналогично CI перпендикулярно  AF. Следовательно, центр вписанной окружности треугольника ABC является по совместительству - ортоцентром треугольника FAC.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Докажите что четырехугольник abcd с вершинами в точках a(1;2) b(3;5) c(5;2) D (3;-1)является ромбом​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

cherry-sweet871435
Corneewan
Цветкова
Люблянова_Р.1777
Евгения-Валерий
Ольга1520
vvk2008
Ohokio198336
info22
tanyamurashova11352
blagorodovaanna375
retropluse832
fucingprinces30
Потапова 79275136869323
many858