ответ: 26
Объяснение:
Пусть r -- радиус вписанной окружности в ΔBCP, а R -- радиус вписанной окружности в ΔBAC
1.
tg∠BAC = 12/5, откуда по определению тангенса
Пусть BC = 12x, тогда AC = 5x
По теореме Пифагора найдём AB:
2.
tg∠CAP = 12/5, по определению тангенса из ΔACP
Пусть CP = 12y, тогда AP = 5y
Составим уравнение с теоремы Пифагора в ΔACP и выразим y через x:
Отрицательным y быть не может, так как он выражает длину отрезка, следовательно y = 5x/13, откуда
3. Выразим через x сторону BP, периметр и площадь ΔCPB:
4. Используя формулу площади через радиус вписанной окружности составим уравнение:
5. Используя найденный x, вычислим периметр и площадь ΔABC:
PΔabc = AB + BC + AC = 13x + 12x + 5x = 30x = 30*13
SΔabc = 1/2 * AC * CB = 1/2 * 5x * 12x = 30x² = 30*13²
6. Найдём R, составив уравнение по формуле S = P/2 * R
1. Pabcd = 40 дм. 2. Sabc = 512 см².
Объяснение:
1. Свойство: Центр вписанной окружности является точкой пересечения биссектрис углов трапеции. Следовательно, треугольник COD - прямоугольный, так как сумма его острых углов равна 90° (так как в трапеции <C + < D = 180°, => (1/2)*(<C+<D) =90°).
Тогда по Пифагору CD = √(OC²+OD²). Или
CD = √(36+64) = 10 дм. АВ = CD = 10 дм.
АВ+CD = 20 дм.
Свойство: Если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон. Следовательно, периметр нашей трапеции равен AB+CD+ BC+AD = 4*10 =40 дм.
2. Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его сторонам. Тогда в прямоугольном треугольнике ОВР косинус угла ОВР равен отношению прилежащего катета ВР к гипотенузе ОВ.
ВР = 16√5/2 = 8√5см. ОВ = 20 см.
Cos(<OBC) = 8√5/20 = 2√5/5.
В прямоугольном треугольнике ВНС катет
ВН = ВС*Cos(<OBC) = 16√5*(2√5/5) = 32cм.
Площадь этого треугольника равна Shbc = (1/2)*BH*BC*Sin(<OBC).
Sin(<OBC) = √(1 - Cos(<OBC)) = √(1-20/25) = 1/√5. Тогда
Shbc = (1/2)*32*16√5*(1/√5) = 256 см². Это половина площади треугольника АВС (так как ВН - высота и медиана). Значит
Sabc = 2*256 = 512 см².
Поделитесь своими знаниями, ответьте на вопрос:
Вписане в рівнобедрений трикутник коло ділить бічну сторону у відношенні 4:5 починаючи від основи.Знайдіть сторони трикутника якщо його периметр дорівнює 52 см
Объяснение:
Уявімо собі трикутник АВС з основою АС, вписане коло з центром О. Ця окружність буде стосуватися до сторони АВ в точці М, а до основи АС в точці Р. За умовами - АМ: МВ = 4: 5
Периметр трикутника: P=AB+BC+AC=52
Розглянемо трикутники АМО і АРО:
Кути М=Р=90 (це радіуси кола), отже ОМ=ОР, АО - загальна сторона.
Отже трикутник АМО=АРО і отже АР=АМ АР:МВ=4:5
Визначимо одиницю пропорції як х, тобто АР:МВ=4:5=4х:5х
AB=BC=4x+5x за умовами
AC=4x+4х
2(4x+5x)+(4x+4x)=52
8x+10x+8x=52
26x=52
x=2
AB=BC=4*2+5*2=18
AC=4*2+4*2=16