filimon211
?>

Вписане в рівнобедрений трикутник коло ділить бічну сторону у відношенні 4:5 починаючи від основи.Знайдіть сторони трикутника якщо його периметр дорівнює 52 см

Геометрия

Ответы

Гаевая1290

Объяснение:

Уявімо собі трикутник АВС з основою АС, вписане коло з центром О. Ця окружність буде стосуватися до сторони АВ в точці М, а до основи АС в точці Р. За умовами - АМ: МВ = 4: 5

Периметр  трикутника: P=AB+BC+AC=52

Розглянемо трикутники АМО і АРО:

Кути М=Р=90 (це радіуси кола), отже ОМ=ОР, АО - загальна сторона.

Отже трикутник АМО=АРО і отже АР=АМ АР:МВ=4:5

Визначимо одиницю пропорції як х, тобто АР:МВ=4:5=4х:5х

AB=BC=4x+5x за умовами

AC=4x+4х

2(4x+5x)+(4x+4x)=52

8x+10x+8x=52

26x=52

x=2

AB=BC=4*2+5*2=18

AC=4*2+4*2=16


Вписане в рівнобедрений трикутник коло ділить бічну сторону у відношенні 4:5 починаючи від основи.Зн
a8227775

ответ: 26

Объяснение:

Пусть r -- радиус вписанной окружности в ΔBCP, а R --  радиус вписанной окружности в ΔBAC

1.

tg∠BAC = 12/5, откуда по определению тангенса

\frac{BC}{AC}=\frac{12}{5}

Пусть BC = 12x, тогда AC = 5x

По теореме Пифагора найдём AB:

AB=\sqrt{AC^2+BC^2}=\sqrt{25x^2+144x^2}=\sqrt{169x^2}=13x

2.

tg∠CAP = 12/5, по определению тангенса из ΔACP

\frac{CP}{AP}=\frac{12}{5}

Пусть CP = 12y, тогда AP = 5y

Составим уравнение с теоремы Пифагора в ΔACP и выразим y через x:

AC^2=CP^2+AP^2\\ \\ (5x)^2=(12y)^2+(5y)^2\\ \\ 25x^2=144y^2+25y^2\\ \\ 169y^2=25x^2\\ \\ y^2=\frac{25x^2}{169} \\ \\ y=б\frac{5x}{13}

Отрицательным y быть не может, так как он выражает длину отрезка, следовательно y = 5x/13, откуда

CP=12y=\frac{60x}{13}\\ \\ AP=5y=\frac{25x}{13}

3. Выразим через x сторону BP, периметр и площадь ΔCPB:

PB=AB-AP=13x-\frac{25x}{13}=\frac{169x-25x}{13}=\frac{144x}{13}

P \Delta CPB=CP+PB+CB=\frac{60x}{13}+\frac{144x}{13}+12x=\frac{60x+144x+156x}{13}=\frac{360x}{13}

S \Delta CPB=\frac{1}{2}\cdot CP\cdot PB =\frac{1}{2}\cdot \frac{60x}{13}\cdot \frac{144x}{13}=\frac{30\cdot144x^2}{169}

4. Используя формулу площади через радиус вписанной окружности составим уравнение:

S \Delta CPB=\frac{P \Delta CPB}{2} \cdot r\\ \\ \frac{30\cdot144x^2}{169}=\frac{360x}{13\cdot 2}\cdot24\\ \\ \frac{30\cdot144x}{169}=\frac{360\cdot24}{13\cdot 2}\\ \\ x=\frac{360\cdot12}{13}:\frac{30\cdot144}{169}\\ \\ x=\frac{30\cdot12\cdot12}{13}\cdot \frac{169}{30\cdot144}\\ \\ x=13

5. Используя найденный x, вычислим периметр и площадь ΔABC:

PΔabc = AB + BC + AC = 13x + 12x + 5x = 30x = 30*13

SΔabc = 1/2 * AC * CB = 1/2 * 5x * 12x = 30x² = 30*13²

6. Найдём R, составив уравнение по формуле S = P/2 * R

30\cdot 13^2=\frac{30\cdot 13}{2} \cdot R\\ \\ R=(30\cdot 13^2):(15\cdot 13)\\ \\ R=13\cdot 2\\ \\ R=26


Из вершины прямого угла c треугольника abc проведена высота cp. радиус окружности, вписанной в треуг
rada8080

1. Pabcd = 40 дм.  2. Sabc = 512 см².

Объяснение:

1. Свойство: Центр вписанной окружности является точкой пересечения биссектрис углов трапеции. Следовательно, треугольник COD - прямоугольный, так как сумма его острых углов равна 90° (так как в трапеции <C + < D = 180°,   =>  (1/2)*(<C+<D) =90°).

Тогда по Пифагору CD = √(OC²+OD²). Или

CD =  √(36+64) = 10 дм.  АВ = CD = 10 дм.

АВ+CD = 20 дм.

Свойство: Если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон. Следовательно,  периметр нашей трапеции равен AB+CD+ BC+AD = 4*10 =40 дм.

2. Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его сторонам. Тогда в прямоугольном треугольнике ОВР косинус угла ОВР равен отношению прилежащего катета ВР к гипотенузе ОВ.

ВР = 16√5/2 = 8√5см. ОВ = 20 см.

Cos(<OBC) = 8√5/20 = 2√5/5.

В прямоугольном треугольнике ВНС катет

ВН = ВС*Cos(<OBC) = 16√5*(2√5/5) = 32cм.

Площадь этого треугольника равна Shbc = (1/2)*BH*BC*Sin(<OBC).

Sin(<OBC) = √(1 - Cos(<OBC))  =  √(1-20/25) = 1/√5.  Тогда

Shbc = (1/2)*32*16√5*(1/√5) = 256 см². Это половина площади треугольника АВС (так как ВН - высота и медиана). Значит

Sabc = 2*256 = 512 см².


1. в равнобедренную трапецию авсд (ав=сд) вписана окружность с центром в точке о .найдите периметр т

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вписане в рівнобедрений трикутник коло ділить бічну сторону у відношенні 4:5 починаючи від основи.Знайдіть сторони трикутника якщо його периметр дорівнює 52 см
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

batalerka391
galtig83
pizniak
Oksana373
myudanova631
kortikov77
lenacari
fetisov68av
cheshirsky-kot
mgg64
Bulanova
romashka17-90
Olga-Lev1160
katrin50
Daniil1945