1. Касательные проведнные с одной точки равны между собой, поэтому
AC = AB = 12 см.
По теореме Пифагора
AO=корень(CO^+AC^2)=корень(9^2+12^2)=15 см
ответ: 12 см, 15 см
2. Извини, но незнаю
3. Хорды MN и PK пересекаются в точке E так, что ME = 12 см, NE = 3 см, PE = KE. Найдите PK.
По свойству хорд
ME*NE=PE*KE
Пусть PE = KE=х см
Тогда x^2=12*3=36
x>0, поєтому х=6 см
PK=PE+KE=6см+6см=12 см
ответ:12 см
4.Треугольник ОАВ равнобедренный, ОА=ОВ=16 см (радиусы);
∠А=∠В=30° - по условию;
ОН - высота ОАВ, равна 16/2=8 см (катет против угла 30°);
АВ=2*АН=2*√(16²-8²)=16√3 см.
Треугольник СОВ равнобедренный, ОС=ОВ=16 см (радиусы);
∠С=∠В=45° ⇒ ∠О=90° - прямоугольный ⇒ СВ=√(16²+16²)=16√2 см.
АВ=16√3 см;
ВС=16√2 см.
Поделитесь своими знаниями, ответьте на вопрос:
Изобразите числовой промежуток [ -4; 2 ]; ( -3; 3 ); (-¥ ; 4 ); [ -6; +¥ ) 2. Изобразите числовой промежуток и запишите его x ³4, 5; x < -3; -4 £ x £ 1; 2, 5 < x £ 4, 5 3. Какие из чисел -2; -1, 5; -1, 2; -1; 0; 1, 3; 1, 4 принадлежат промежутку (-1, 2; 1, 4) 4. Найдите пересечение и объединение промежутков [ -4; 8] и [0; 5]; [-3; 6) и (-1; 1]; ( 5; +¥) и (1; +¥
х*9х=15*15,
9х(в квадр)=225,
х(в квадр)=25,
х=-5 - не является решением задачи
х=5
5*10=50(см)-длина диаметра окружности.
Объяснение:
Если хорда перпендикулярна диаметру, значит она точкой пересечения делится пополам, т.е. на отрезки по 15см. Диаметр-это то же хорда разделеная в 0тношении 1:9. Пусть 1 часть диаметра равна х, тогда длина всего диаметра равна х+9х=10х.
Если хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды (теорема об отрезках пересекающихся хорд.