Chitaia
?>

2. Сторона квадрата равна 4 см. Точка, равноудаленная от всех вершин квадрата, находится на расстоянии 6 см от точки пересечения диагоналей. Найдите расстояние от этой точки до вершин квадрата.

Геометрия

Ответы

mbykovskiy

Точка, равноудаленная от вершин квадрата, находится на перпендикуляре к плоскости квадрата, проходящем через точку пересечения его диагоналей.

Действительно, если МО - перпендикуляр к плоскости, то прямоугольные треугольники МОА, МОВ, МОС, МОD равны по двум катетам (МО - общий катет, ОА = ОВ = ОС = ОD как половины равных диагоналей),  значит и МА = МВ = МС = MD.

АО = АС/2 = AD√2/2 = 4√2/2 = 2√2 см

ΔМАО: ∠МОА = 90°, по теореме Пифагора

              МА = √(МО² + АО²) = √(36 + 8) = √44 = 2√11 см

Шавкат кызы

ответ:В треугольной пирамиде проекция бокового ребра L на основание совпадает с отрезком, равным (2/3) высоты h треугольника в основании пирамиды.

h =(3/2)* (L*cos 60°) = (3/2)*(√3*(1/2)) = 3√3/4.

Сторона а основания равна:

а = h/cos 30° =  (3√3/4)/(√3/2) = 3/2.

Высота пирамиды H = L*sin 60° = √3*(√3/2) = 3/2.

Основание пирамиды вписывается в шар по окружности радиуса Ro.

Ro = (1/3)h/(sin 30°) = (1/3)*(3√3/4)/(1/2) = √3/2.

Теперь переходим к рассмотрению осевого сечения пирамиды через два боковых ребра, развёрнутых в одну плоскость.

Для шара это будет диаметральное сечение.

Радиус шара Rш = (abc)/(4S).

Здесь a и b - боковые рёбра, с - диаметр описанной около основания пирамиды окружности (с = 2Ro = √3).

Сечение S = (1/2)H*(2Ro) = (1/2)*(3/2)*√3 = 3√3/4.

Получаем Rш = (√3*√3*√3)/(4*(3√3/4)) = 1.

Объём шара V = (4/3)πR³ = (4/3)π куб

Объяснение:

ikosheleva215

Здравствуйте!

1).

∠1+∠2=180° смежные

∠1=2∠2 по условию

2∠2+∠2=180°

3∠2=180°

∠2=60°

∠1=2∠2=120°

2). Треугольники OBC и AOD равны по двум сторонам и углу между ними (AO=OB; CO=OD по условию; ∠СОВ=AOD -вертикальные) => ∠BCO=∠ABO как соответственные углы в равных треульниках.

AD || BC, т.к. накрест лежащие углы (∠BCO=∠ABO) равны. ЧТД.

3).

AB+AC+BC=34 см. (периметр)

AB=AC (боковые стороны)

BC (основание) =АВ+2 см= АС+ 2 см

BC+ (BC + 2 см)+(ВС+2 см) =34 см

3 ВС=30 см

ВС= 10 см

АВ=АС=10 см +2 см= 12 см

4). Треугольники АОВ и DOC равны по стороне и двум прилежащим углам (АО=ОD; ∠A=∠D по условию; ∠AOB=DOC вертикальные)

5). Проведем отрезок BD. Треугольники ABD и BDC- равнобедренные (AB=AD; BC=CD по условию) => ∠АВD=∠ADB и ∠CBD=∠CDB как углы при основании в р/б треугольнике.

∠В=∠АBD+∠CBD

∠D=∠ADB+∠CDB

А так как ∠АВD=∠ADB и ∠CBD=∠CDB, то ∠В=∠D.

6). Сумма острых углов прямогульного треугольника равна 90°.

∠A+∠B=90°

∠B=∠A-60° по условию

∠A+∠A-60°=90°

2∠A=150°

∠A=75°

∠B=∠A-60°=75°-60°=15°

7). Найдем ∠B. Сумма углов треугольника равна 180°.

∠А+∠В+∠С=180°

70°+55°+∠B=180°

∠B=180°-125°

∠B=55°

То есть ∠В=∠С=55°. А если углы в треуголнике равны, то треугольник равнобедренный. Основание BC.

7.1). Рассмотрим треугольник BMC. Он прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°.

∠С+∠МBC=90°

55°+∠MBC=90°

∠MBC=35°

∠ABC=∠ABM+∠MBC

55°=∠ABM+35°

∠ABM=20°

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

2. Сторона квадрата равна 4 см. Точка, равноудаленная от всех вершин квадрата, находится на расстоянии 6 см от точки пересечения диагоналей. Найдите расстояние от этой точки до вершин квадрата.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

lukanaft
pavtrusov
Kosov-Aleksandr379
lion13
Vasilii1891
narkimry134
levsha-27509
buhtovarish
rodin4010
Reutskii884
billl24
komarov-dmitriy
vdm4275
edvard-b
Эвелина