Имеем треугольник АВС со сторонами АВ:ВС=15:41; и высотой ВД; Проекции сторон на основание АС равно АД=12; СД=40; Обозначим коэффициенты подобия сторон AB за Х, она будет равна 15 Х, а проекцию стороны СД за У и она будет равна 41У; Тогда справедливо равенство:15Х+41У=56;Так как их сумма равна 56 по УСЛОВИЮ ЗАДАЧИ; Приняв коэффициенты подобия за 1 в обоих случаях имеем15+41=56; Проверим данный ответ через длину их общей высоты АД, она должна иметь одно и то же значение: АД^2=41^2-40^2=81; 15^2-12^2=81; 81=81; Решение верно! ответ:АВ=15; ВС=41;
vantoslaltd
05.01.2022
В задаче этого не сказано, но будем исходить из того, что шестиугольник вписан в окружность, образованную сечением цилиндра. Тогда длина его стороны - 7см. Шестиугольник состоит из шести равносторонних треугольников, высота которых равна 7√3 / 2, площадь - 1/2 × 7 × 7√3/2 = 49√3/4. Значит, площадь шестиугольника = 147√3/2 (S2) Площадь сечения стержня = 49π (S1) Площадь отверстия = 0.16π (S3) V1 (стержня) = 49π * 89 V2 (отходов) = (S1 - S2 + S3) × 88 + S1 × 1 (последний кусочек - остаток стержня из которого уже не получится целой гайки) Процент отходов = V2 / V1 * 100 Гаек получится 88 / 4 Остальное посчитайте сами =)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Сторона ромба равна 13 см, а одна из его диагоналей 10 см. Найдите вторую диагональ ромба.
половина диагонали = 10÷2=5 см
половина неизвестной диагонали = х см
по т. Пифагора:
13^2=5^ + х^2
169 = 25 + х^2
х^2 = 169-25=144
х= 12 см.
диагональ = 12 + 12 = 24 см